
Policy Gradient vs. Value Function Approximation:
A Reinforcement Learning Shootout

Technical Report No. CS-TR-06-001

February 2006

Josh Beitelspacher, Jason Fager, Greg Henriques, and Amy McGovern

School of Computer Science
University of Oklahoma

Norman, OK 73019

Tel: 405-325-8446
Fax: 405-325-4044

E-mail: {jj beetle, jfager, greg.france, amcgovern}@ou.edu



Policy Gradient vs. Value Function Approximation:
A Reinforcement Learning Shootout

Reinforcement Learning, Sarsa(λ), Policy Gradient, Agent Learning, Applications and Case Studies, Artificial
Neural Networks

Abstract

This paper compares the performance of pol-
icy gradient techniques with traditional value
function approximation methods for rein-
forcement learning in a difficult problem do-
main. We introduce the Spacewar task, a
continuous, stochastic, partially-observable,
competitive multi-agent environment. We
demonstrate that a neural-network based im-
plementation of an online policy gradient al-
gorithm (OLGARB (Weaver & Tao, 2001)) is
able to perform well in this task and is com-
petitive with the more well-established value
function approximation algorithms (Sarsa(λ)
and Q-learning (Sutton & Barto, 1998)).

1. Introduction

Value function approximation has been applied to a
wide variety of task domains and has demonstrated it-
self to be a strong solution for many difficult problems
(Sutton & Barto, 1998; ?). While there have been a
number of papers written about the theoretical jus-
tification for policy gradient methods in partially ob-
servable, continuous valued domains, (Williams, 1992;
Sutton et al., 1999; Baxter & Bartlett, 2001), experi-
mental data for these methods has typically been re-
stricted to simple demonstration problems. In addi-
tion, very few papers have focused on empirically com-
paring policy gradient methods to traditional value
function approximation methods in difficult environ-
ments. This paper compares the performance of pol-
icy gradient techniques with traditional value function
approximation methods in a challenging problem do-
main.

Traditional reinforcement learning approaches allow
an agent to determine its behavior in an environment

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

Figure 1. A screenshot from the Spacewar simulator. The
black dots are bullets fired from ships. The lines indicate
the current velocities of the ships. Numbers to the lower
right of ships indicate the remaining health points.

by estimating the long-term expected value of each
possible action given a particular state. Algorithms
such as Q-Learning and Sarsa work by estimating this
underlying value function, and choosing actions based
on the highest estimated value.

Sutton et al. (1999) point out some of the theoretical
drawbacks of value function estimation. Most imple-
mentations lead to deterministic policies even when
the optimal policy is stochastic, meaning that prob-
abilistic policies are ignored even when they would
produce superior performance. Because these meth-
ods make distinctions between policy actions based on
arbitrarily small value differences, tiny changes in the
estimated value function can have disproportionately
large effects on the policy. These problems directly
relate to a demonstrable inability for value-function
based algorithms to converge in some problem domains
(Baxter et al., 2001).



Policy Gradient vs. Value Function Approximation: A Reinforcement Learning Shootout

An alternative method for reinforcement learning that
bypasses these limitations is a policy-gradient ap-
proach. Instead of learning an approximation of the
underlying value function and basing the policy on a
direct estimate of the long term expected reward, pol-
icy gradient learning algorithms attempt to search the
policy space directly in order to follow the gradient of
the average reward. In addition to being able to ex-
press stochastic optimal policies and being robust to
small changes in the underlying function approxima-
tion, under the appropriate conditions, policy gradi-
ent methods are guaranteed to converge (Sutton et al.,
1999; Baxter & Bartlett, 2001).

While the theoretical advantages of policy gradient
techniques are straightforward to demonstrate with
particularly crafted tasks (Baxter et al., 2001), lit-
tle is known about whether these advantages trans-
late into superior performance for general tasks. For
online implementations, the literature suggests that
convergence time may be too slow to be of benefit in
large tasks without the addition of significant domain
knowledge (Tao, 2001; Baxter et al., 2001).

2. Spacewar Domain

The Spacewar problem domain is inspired by the clas-
sic game of the same name written by Stephen Russell
at MIT in the early 1960s (Graetz, 1981). The origi-
nal game is simple: a single star exerts a gravitational
force on two ships in a toroidal space. A player can ro-
tate her ship to the right or left, fire her ship’s thruster,
jump into hyperspace, or fire a bullet. The game con-
tinues until one of the ships is hit with a bullet, or
until the ships collide.

The version of Spacewar used in this paper is signifi-
cantly different than the original version. Instead of a
central sun exerting a gravitational force, the environ-
ment contains some number of large moving obstacles,
while gravity is neglected. In addition, there can be
more than two ships in a game. The amount of fuel and
bullets available to each ship are limited, and regener-
ate at a rate that prevents their constant use. Ships are
damaged and eventually destroyed by collisions with
other objects. Obstacles can not be destroyed.

Each ship is controlled by a separate agent. At each
timestep agents choose an action from a discrete set
of actions. Possible actions include turning left, turn-
ing right, thrusting, shooting, or doing nothing. Com-
bined actions are also possible. For example, an agent
can turn left, thrust, and shoot at the same time. The
12 possible actions are listed in Table 1. The actions
are designed so that a human player needs only 4 keys

Table 1. All possible actions in the Spacewar domain.

Action

1. Do Nothing
2. Thrust
3. Turn Right
4. Turn Left
5. Fire
6. Thrust and Turn Right
7. Thrust and Turn Left
8. Thrust and Fire
9. Turn Right and Fire
10. Turn Left and Fire
11. Thrust, Turn Right, and Fire
12. Thrust, Turn Left, and Fire

to fully control a ship. Agents choose actions every
1/10 second.

The physics simulation follows traditional arcade-
game physics. An object maintains its current velocity
unless it is involved in a collision or fires it’s thrusters.
A ship undergoes constant acceleration while thrust-
ing, but turns at a constant angular velocity.

This problem domain is difficult for several rea-
sons. Unlike many common reinforcement learning
test problems, it has a large and continuous state
space. Also, the fact that it is a competitive multi-
agent environment adds complexity. Due to the way
ships move, the environment often presents conflict-
ing goals. For example, bullets fire in the direction
that the ship is currently pointed, so steering the ship
away from obstacles and firing at other ships cannot
be viewed as independent tasks.

The simulator (Figure 1) was written in Java. The
source code and compiled releases are available on-
line.1

2.1. Task Definition

Success at Spacewar is defined by the ability of an
agent to stay alive for as long as possible. A single
game lasts up to five minutes, or until all ships have
been destroyed.

We restrict the problem by setting the size of the space
and the initial number of ships and obstacles. We use
six obstacles with a five meter radius and five ships
with a one meter radius. These 11 objects are ran-
domly positioned in an 80 by 60 meter space such
that there is a reasonable buffer distance between all

1Source code will be made available after anonymous
review is completed.



Policy Gradient vs. Value Function Approximation: A Reinforcement Learning Shootout

the objects. The obstacles are also assigned random
velocities between zero and three meters per second.

Ships are initially assigned 16 health points. A col-
lision with a bullet takes away one health point, and
a collision with an obstacle takes away one or more
health points depending on the speed of the collision.
Ships accelerate at six meters per second squared and
turn at 150 degrees per second.

2.2. Heuristics

The learning agents were trained against four sim-
ple heuristics. The first heuristic is Random, which
chooses a random action at every time step. In a typ-
ical game, Random will survive around 20 seconds.
The Do Nothing heuristic performs the Do Noth-
ing action at every timestep, and survives around 75
seconds.

The remaining two heuristics are slightly more com-
plicated. The Hide heuristic attempts to avoid other
ships by hiding behind an obstacle. The Seek heuris-
tic takes a more aggressive strategy and chases and
fires at other ships. Seek survives an average of 100
seconds while Hide only survives for around 70 sec-
onds on average.

These heuristics are not challenging opponents for an
experienced human player, but they provide reason-
able training partners for the learning agents. Their
performance also offers a good baseline for comparison.

3. Applying RL to Spacewar

The Spacewar task includes six obstacles and five ships
moving through continuous space with continuous ve-
locities. There is an effectively infinite number of pos-
sible states. While it is possible to break down the
continuous state into a reasonable number of possible
states, it is very difficult to do this in a way that re-
tains all the important information.

We attempted to learn using Q-Learning and a dis-
cretized state space. The area surrounding the ship
was partitioned by marking out ten distance rings
around the agent at regular radius intervals, and ten
wedges around the agent at regular angular intervals.
Each sector in the resulting radial grid was checked
for being occupied by up to two ships or obstacles. In
addition to these external features, the agent’s speed
was divided into ten bins. The reward signal corre-
sponded to a variable “danger level” at each time step
that didn’t involve a collision, and at those timesteps
when collisions occurred, the reward was −5 for each
health point lost. The learning rate was set as α = 0.1,

0 20 40 60 80 100
0

50

100

150

200

Training Epoch (500 games)

A
ve

ra
ge

 L
ife

tim
e 

(s
ec

on
ds

)

 

 

Q−Learning
Random
DoNothing
Hide
Seek

Figure 2. The average lifetime of the four heuristics and a
Q-Learner based on a discrete state space.

and the discount factor was set as γ = 0.99.

The performance of this agent is shown in Figure 2
along with the heuristics. After 50,000 games, the
agent had visited over 16,000,000 states, of which only
80,000 were unique. The agent was able to learn a bet-
ter policy than Random, but could not reach the level
of performance of the better heuristics in a reasonable
amount of time.

Given enough time and effort, it would probably be
possible to design a state space that would include the
necessary information to enable a learning agent to
perform well. However, given the continuous nature of
the Spacewar task, we hypothesized that function ap-
proximation would perform better, and would produce
superior results with less time and effort than tuning
the Q-learning parameters.

3.1. Value Function Approximation

Sarsa(λ) is a well known Temporal Difference (TD)
learning method (Sutton & Barto, 1998). Unlike other
TD learning methods, Sarsa(λ) has been shown to be
stable when used with function approximation (Baird,
1995; Gordon, 2000). This property makes Sarsa(λ)
an ideal algorithm to apply to Spacewar.

A backpropagation neural network is used to approx-
imate the value function. The network has 51 input
nodes for the state representation described in the next
section, 80 hidden sigmoid nodes, and 5 linear output
nodes that represent possible actions. Although there
are 12 possible actions in the Spacewar domain, we
learn on a subset of the available actions. The ac-
tions the Sarsa(λ) agent has access to are: Do Noth-
ing, Turn Right, Turn Left, Thrust, and Fire.



Policy Gradient vs. Value Function Approximation: A Reinforcement Learning Shootout

Decreasing the number of actions available increases
learning speed significantly, and does not significantly
damage the performance of the agent.

After an action is chosen, the TD error is attributed to
the node representing the action. Backpropagation is
used to compute the gradient of the squared TD error
with respect to the network weights. The eligibility
trace and weight update rules can then be expressed
in terms of the gradient:

eji ← γλeji −
1

2 · TDerror
∂TD2

error
∂wji

wji ← wji + α · TDerror · eji,

where wji is the network weight from node i to node
j, and eji is the corresponding eligibility trace. When
λ = 0, this update rule is identical to the backpropa-
gation update rule.

3.1.1. State Representation

Choosing a good state representation is critical when
using neural networks for reinforcement learning. In
order to take advantage of generalization within the
neural networks, we encode our state representation so
that similar states have similar representations. This is
done by converting from a global coordinate system to
an egocentric coordinate system. In egocentric coordi-
nates we can express the relative location of an object
with a distance and an angle. Distances and angles
have been used successfully as state representations in
other domains (Stone & Sutton, 2001).

The state representation for a single obstacle consists
of four values: the angle to the obstacle, the distance
to the obstacle, the velocity of the obstacle toward the
ship and the velocity of the obstacle around the ship.
Two more values are used when encoding opponent
ships: the angle from the opponent ship to the agent’s
ship and the health of the opponent ship. Figure 3
shows this representation.

Obstacles can not be destroyed, so there are always ex-
actly six obstacles. Six obstacles can be encoded with
four values each, for a total of 24 values. However, op-
ponent ships can be destroyed as the game progresses.
If an opponent is destroyed, it is represented in the
state space as six zero values. In all, 24 values are
needed to represent the opponent ships. Finally, three
pieces of information about the agent’s ship are added
to the state space: health, fuel remaining, and magni-
tude of velocity.

Since obstacles play identical roles in the simulation,
they can be sorted by distance without changing the
meaning of the state representation. Ships do not play

θ1
d

v

vy

vx

θ2

Figure 3. The state representation for a single opponent
ship. A ship’s location is described by θ1, θ2, d, vx, and
vy. The orientation of an obstacle is insignificant, so θ2 is
omitted when describing obstacles.

identical roles. Two opponents may have completely
different playing styles. Even in this case, we choose to
sort the opponent ships by distance. This step forces
the neural network to play against all opponents in the
same way. This allows a trained network to compete
more effectively when playing against an unknown set
of opponents.

3.1.2. Reward Structure

The goal of the RL agent is to stay alive as long as
possible so we give the agent a small but constant re-
ward of one at every time step. We penalize the agent
−5 for each health point lost and −20 for dying.

Although turning, thrusting, and firing are not nega-
tive actions for the agent to take, we slightly penal-
ize them by giving a reward of −.03333 for any uses
of these actions. Moving fast greatly increases the
chance of a collision, so applying a small penalty to
each thrust action discourages the buildup of exces-
sive speed.

Turning the ship costs the agent nothing, so there is
no strong reason to discourage it. However, if turning
is not penalized the agent may turn constantly. While
not necessarily a bad strategy, it is not how humans
typically play the game. Turning for no reason makes
the agent appear unintelligent. Giving a small penalty
ensures that the agent only turns if it has a reason to
do so. Firing is penalized for similar reasons.



Policy Gradient vs. Value Function Approximation: A Reinforcement Learning Shootout

3.2. Policy Gradient

Baxter and Bartlett (2001) describe a policy gradient
reinforcement learning technique for partially observ-
able Markov decision processes that involves making a
biased estimate of the gradient of the average reward.
Once the gradient has been estimated, adjustments
to the policy parameters allow the learning agent to
modify its behavior in such a way as to maximize the
increase in reward from the environment.

The policy gradient method selected for implementa-
tion here is the OLGARB algorithm, given by Weaver
and Tao (2001):

At each time step:

1. Observe state Xt

2. Probabilistically select action At according to
µ(·|Xt, θt)

3. Apply At and observe reward Rt

4. Update variables:
Bt = Bt−1 + Rt−Bt−1

t

Zt = γZt−1 + ∇θµ
µ (At|Xt, θt−1)

θt = θt−1 + α(Rt −Bt)Zt

In the above algorithm, µ(·|Xt, θt) refers to the proba-
bilistic policy determined by the current state Xt and
policy parameters θt. The average of the reward the
agent has received across all timesteps is given by Bt,
also called the average reward baseline. Zt defines the
gradient for each policy parameter, with prior gradi-
ent estimates contributing to current estimates at a
rate determined by γ. Baxter and Bartlett (2001) de-
scribes γ as specifying a bias-variance tradeoff. Higher
values of γ provide reduced bias in the gradient esti-
mates, but also cause variance to increase. α defines
the learning rate for the agent.

OLGARB, like Sarsa(λ), is an online learning algo-
rithm that attempts to improve its performance with
each timestep. Note that this algorithm is a slight
variation on the OLPOMDP algorithm introduced by
Baxter et al. (2001). The difference is the introduc-
tion of the average reward baseline Bt in the update
of the policy values. The advantage of OLGARB over
standard OLPOMDP is that it reduces the variance
associated with an increasing γ term while maintain-
ing the bias reduction that such an increase provides
(Weaver & Tao, 2001).

For this paper, the policy is encoded with a neural
network that uses a tanh squashing function on the
hidden nodes and has linear output nodes. The proba-
bilistic policy is determined by normalizing the output

with a softmax function and interpreting the resulting
values as probabilities. Updates to the policy are han-
dled in a manner similar to backpropagation, except
that the error term for each output node is given by:

errj = oj − Pj .

where oj is 1 if the jth node was selected and 0 oth-
erwise, and Pj is the probability of selecting the jth
node. A detailed description of the backpropagation
method used here is given by El-Fakdi et al. (2005).

3.2.1. State Representation

Initially, the state representation for the OLGARB
learner was the same as that for the Sarsa(λ) learner.
However, the OLGARB learner trained with this state
representation could not learn effective strategies in
the face of the sorted inputs and the sudden switch to
six zeroes when an opponent agent died. In an effort to
make the state space appear more continuous to the
agent, the agent used a switching neural net, where
a separate net is used for each number of opponent
ships in the environment. Additionally, the obstacles
and opponent ships are not sorted.

3.2.2. Reward Structure

The reward structure for the OLGARB learner was
also initially the same as that used for the Sarsa(λ)
learner. Once again, the OLGARB learner trained
with the same settings as the Sarsa(λ) learner could
not learn effective strategies. The reward structure
was modified to strongly encourage the agent to mini-
mize its speed, by penalizing the agent with the square
of its velocity magnitude. Additionally, the penalties
for losing health and dying were increased dramati-
cally, from −5 to −1000 for each health point lost and
from −20 to −10000 for dying.

This change makes the current learning task more sim-
ilar to experimental learning tasks evaluated in the
existing literature for online policy-gradient learning.
Weaver and Tao (2001) demonstrate the effectiveness
of OLGARB on the Acrobot task, where the reward
signal is given as the height above the starting position.
Baxter et al. (2001) describes a puckworld, where the
reward signal is the negative distance between the puck
and a goal state, as well as a combination of puckworld
with a mountain climbing task, where the reward is
given as a constant value on the lower plateau and as
the negative velocity magnitude on the upper plateau.
The trait that these experiments share is that the goal
can be expressed by a single particular value of the
reward function, and that the reward function is con-
tinuous with respect to the state.



Policy Gradient vs. Value Function Approximation: A Reinforcement Learning Shootout

0 20 40 60 80 100
0

50

100

150

200

Training Epoch (500 games)

A
ve

ra
ge

 L
ife

tim
e 

(s
ec

on
ds

)

 

 

α = 0.010
α = 0.005
α = 0.001

0 20 40 60 80 100
0

50

100

150

200

Training Epoch (500 games)

A
ve

ra
ge

 L
ife

tim
e 

(s
ec

on
ds

)

 

 

γ = 0.999
γ = 0.99
γ = 0.9

0 20 40 60 80 100
0

50

100

150

200

Training Epoch (500 games)

A
ve

ra
ge

 L
ife

tim
e 

(s
ec

on
ds

)

 

 

λ = 0.9
λ = 0.7
λ = 0.5

Figure 4. Sarsa(λ) learning results averaged over 30 runs of 50,000 episodes. (a) Varied learning rate with γ = 0.99 and
λ = 0.7. (b) Varied discount rate with α = 0.005 and λ = 0.7. (c) Varied eligibility trace decay rate with α = 0.005 and
γ = 0.99.

In the same way, the restructured reward system pro-
vides the agent with a clear gradient for the policy
to follow towards a strong heuristic player. The re-
ward signal provides a continuous trail from policies
that lead to high velocities to policies that attempt to
minimize the speed of the agent’s ship. Since smaller
velocity magnitudes are less likely to lead to catas-
trophic collisions, the performance of the agent cor-
respondingly improves with the average reward. The
addition of domain knowledge to the reward function
of an OLPOMDP-based learner has been shown to
provide significant improvement in convergence time
(Tao, 2001); that proved to be the case here as well.

4. Results

In order to evaluate the performance of each algo-
rithm, we recorded the lifetime of each agent in 30
trials of 50,000 games. We averaged the 30 trials, di-
vided the results into 100 epochs of 500 games, and
plotted the average lifetime of each agent during each
epoch. Space was randomly initialized for every game,
so there was a large variation in starting positions.
Some starting positions were very good, while others
were untenable. This led to a large standard deviation
for all our results, and forced us to look at the aver-
age lifetime over a large number of games to see any
patterns.

4.1. Value Function Approximation

Sarsa(λ) has three important parameters to tune: the
learning rate, α; the discount rate, γ; and the eligi-
bility trace decay rate, λ. The final parameter, ε, or
the probability of taking a random action, was set to
0.05 for all our experiments. Because actions are so
short, 1/10 second, taking random actions 5% of the
time should not significantly hurt performance.

After initial experimentation, we found values for α,
γ, and λ that worked well on short sets of runs. These
values were: α = 0.005, γ = 0.99, and λ = 0.70. We
used these values as baseline parameters, and ran seven
sets of 30 trials with varying parameters. Results are
presented in Figure 4.

With all but two of the parameter combinations, agent
performance was significantly better than any of the
heuristics. Some agents were able to learn policies that
kept them alive for close to three minutes, while none
of the heuristics survived for even two minutes. Of the
two combinations that performed poorly, α = 0.001
learned too slowly to achieve good performance, and
γ = 0.9 was too short sighted to learn a good overall
strategy.

At the highest learning rate, 0.01, agents learned sub-
stantially faster than at the other parameter settings.
Agents with these settings performed better than the
heuristics after only 6,000 games.

4.2. Policy Gradient

The most important adjustable parameter in the OL-
GARB algorithm is γ, as this parameter directly af-
fects the relative bias and variance of the agent’s gra-
dient estimate. While the learning rate, α, also plays
an important role, the baseline value in OLGARB acts
to adjust the effective learning rate by the difference
between the current and mean reward. With a large
variation in the reward signal, the learning rate needs
to be small in order for the policy to converge.

As with Sarsa(λ), initial parameters were selected by
evaluating the performance of various configurations
in short test runs. We selected three test values, γ =
0.99, γ = 0.9999, and γ = 0.99999999, and ran 6 sets
of 30 trials. Three of the sets used just the defined γ
values, while the remaining three added a weight decay



Policy Gradient vs. Value Function Approximation: A Reinforcement Learning Shootout

0 20 40 60 80 100
0

50

100

150

200

Training Epoch (500 games)

A
ve

ra
ge

 L
ife

tim
e 

(s
ec

on
ds

)

 

 

γ = 0.99999999
γ = 0.9999
γ = 0.99

0 20 40 60 80 100
0

50

100

150

200

Training Epoch (500 games)

A
ve

ra
ge

 L
ife

tim
e 

(s
ec

on
ds

)

 

 

γ = 0.99999999
γ = 0.9999
γ = 0.99

Figure 5. Performance of OLGARB with γ = 0.99, γ = 0.9999, and γ = 0.99999999. (a) Without neural network weight
decay. (b) With neural network weight decay.

0 20 40 60 80 100
0

5

10

15

20

25

Training Epoch (500 games)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(s
ec

on
ds

)

 

 

γ = 0.99999999
γ = 0.9999
γ = 0.99

0 20 40 60 80 100
0

5

10

15

20

25

Training Epoch (500 games)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(s
ec

on
ds

)

 

 

γ = 0.99999999
γ = 0.9999
γ = 0.99

Figure 6. Standard deviation of OLGARB performance across 30 runs with γ = 0.99, γ = 0.9999, and γ = 0.99999999.
(a) Without neural network weight decay. (b) With neural network weight decay.

parameter in an attempt to avoid ‘wedge’ conditions
at the beginning of the learning cycle (Baxter et al.
(2001) describe the necessity for this in their discussion
of the mountain/puck experiments). The performance
for each of these runs is displayed in Figure 5, and the
variance for each of these runs is displayed in Figure 6.

For the two smaller γ values, the agent is able to learn a
good policy quickly. For the highest γ value, however,
the rate of improvement is slow, and while it looks as
though the agent is still improving at the end of all
the trials, the maximum performance of the agent for
the largest γ value is much less than the performance
achieved by the other OLGARB agents after only a
short time.

Figure 7 illustrates how the best OLGARB agent per-
forms in comparison to the heuristics and the best
Sarsa(λ) agent. The policy gradient learner surpasses
the Hide and Do Nothing heuristics after only four
to five thousand games. OLGARB is able to find a

policy that competes with Seek more quickly than
Sarsa(λ) is able to match Do Nothing’s performance.
At and beyond ten thousand games, however, Sarsa(λ)
demonstrates a dramatic improvement over all of the
other agents.

5. Conclusion

This paper demonstrates that a Sarsa(λ) learner was
able to perform significantly better than an OLGARB
learner in the Spacewar task domain. While OLGARB
was able to achieve a higher level of performance more
quickly than Sarsa(λ), Sarsa(λ) continued learning for
a much longer time, and was ultimately able to learn
a far superior policy.

The early success of OLGARB may have more to
do with the modified state representation and reward
structure than the change in algorithm. Like many
real-world problems, Spacewar does not naturally sup-
ply an agent with a clear gradient to follow in order



Policy Gradient vs. Value Function Approximation: A Reinforcement Learning Shootout

0 20 40 60 80 100
0

50

100

150

200

Training Epoch (500 games)

A
ve

ra
ge

 L
ife

tim
e 

(s
ec

on
ds

)

 

 

OLGARB
Sarsa(λ)
DoNothing
Hide
Seek

Figure 7. Learning results for competitive runs of Sarsa(λ)
and OLGARB at their best parameter settings. Both
learning agents survived longer in this test than in the in-
dividual tests.

to improve it’s performance. In order for policy gra-
dient to be used efficiently in this problem domain, it
was necessary to use significant prior knowledge to set
up a reward structure that presented the agent with
a gradient. This process could easily lead to errors.
A poorly setup reward structure could lead to poli-
cies that may be good at collecting reward, but are far
from optimal at the primary task.

In contrast, when using Sarsa(λ) we set up the reward
structure to reinforce exactly the behavior we wanted,
but we did not have to tell the agent how to achieve the
goal. In this sense, Sarsa(λ) was much easier to work
with, and is in general less prone to errors resulting
from inappropriate reward configurations.

Currently, the theoretical benefits of policy gradient
techniques appear to be outweighed by the difficul-
ties posed in their application to real world problems.
In contrast, value function approximation algorithms
have a proven history of success on difficult problems,
despite theoretical flaws.

References

Baird, L. C. (1995). Residual algorithms: Reinforce-
ment learning with function approximation. Pro-
ceedings of the 12th International Conference on
Machine Learning (pp. 30–37). Morgan Kaufmann,
San Francisco, CA.

Baxter, J., & Bartlett, P. L. (2001). Infinite-horizon
policy-gradient estimation. Journal of Artificial In-
telligence Research, 15, 319–350.

Baxter, J., Bartlett, P. L., & Weaver, L. (2001). Ex-

periments with infinite-horizon, policy-gradient es-
timation. Journal of Artificial Intelligence Research,
15, 351–381.

El-Fakdi, A., Carreras, M., & Ridao, P. (2005). Di-
rect gradient-based reinforcement learning for robot
behavior learning. ICINCO (pp. 225–231).

Gordon, G. J. (2000). Reinforcement learning with
function approximation converges to a region. Ad-
vances in Neural Information Processing Systems
(pp. 1040–1046). MIT Press.

Graetz, J. M. (1981). The origin of spacewar. Creative
Computing, 56–67.

Stone, P., & Sutton, R. S. (2001). Scaling reinforce-
ment learning toward RoboCup soccer. Proceedings
of the 18th International Conference on Machine
Learning (pp. 537–544). Morgan Kaufmann, San
Francisco, CA.

Sutton, R., McAllester, D., Singh, S., & Mansour, Y.
(1999). Policy gradient methods for reinforcement
learning with function approximation (Technical Re-
port). ATT Labs.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. Cambridge, MA, USA:
MIT Press.

Tao, N. (2001). Walking the path: An application
of policy gradient reinforcement learning to network
routing. Bachelor’s thesis, Australian National Uni-
versity.

Weaver, L., & Tao, N. (2001). The optimal reward
baseline for gradient-based reinforcement learning.
Uncertainty in Artificial Intelligence: Proceedings of
the Seventeenth Conference (pp. 538–545).

Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8, 229256.


