
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

IMPLICIT ROBOT LOCALIZATION

THROUGH PREDICTION

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

JOSHUA J. BEITELSPACHER
Norman, Oklahoma

2006

IMPLICIT ROBOT LOCALIZATION
THROUGH PREDICTION

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Prof. Dean Hougen, Chair

Prof. Amy McGovern

Prof. Andrew Fagg

c© Copyright by JOSHUA J. BEITELSPACHER 2006
All Rights Reserved.

Dedication

To my parents, David and Kathy Beitelspacher.

Acknowledgments

I would like to thank my advisor, Dr. Dean Hougen, for providing guidance from

the very beginning of my work. I would also like to thank Dr. Amy McGovern and

Dr. Andrew Fagg for serving on my thesis committee. The insights they provided

greatly improved the quality of this thesis.

The members of the Robotics, Evolution, Adaptation, and Learning Laboratory

also deserve thanks for their helpful suggestions. Particularly, Mark Woehrer pointed

me in interesting and unexpected directions that greatly influenced the final outcome

of my work.

Finally, I would like to thank my parents for making this possible, and Kiley for

helping me through the final months of work.

iv

Contents

Acknowledgments iv

List Of Figures vii

Abstract ix

1 Introduction 1
1.1 Localization as a System Property . 1
1.2 Overview . 2

2 Neural Networks and Reinforcement Learning 4
2.1 Neural Networks . 4

2.1.1 Feed-Forward Networks . 5
2.1.2 Recurrent Networks . 9
2.1.3 Self-Organizing Maps . 11

2.2 Reinforcement Learning . 12
2.2.1 Action-Value Functions . 15
2.2.2 Q-Learning . 18

3 Mobile Robot Localization 21
3.1 Localization Strategies . 22

3.1.1 Explicit Localization . 22
3.1.2 Implicit Localization . 25

3.2 Localization Problems . 27
3.2.1 Position Tracking . 28
3.2.2 Global Localization . 28
3.2.3 Simultaneous Localization and Mapping 29
3.2.4 Generalizations to Implicit Localization 30

4 Developing Implicit Localization 32
4.1 Developmental Robotics . 32
4.2 Bootstrapping Learning . 36
4.3 Learning Abstraction . 37

v

4.4 Learning Anticipation . 41
4.5 Improving Performance . 50
4.6 Application to Localization . 53

5 Evaluating Implicit Localization 57
5.1 Path Following . 57
5.2 Grid World . 58

5.2.1 Anticipation . 60
5.2.2 Localization along a Path . 72
5.2.3 Control from Prediction . 79
5.2.4 Reinforcement Learning . 82

5.3 Simulated Robot . 87
5.3.1 Abstraction . 89
5.3.2 Anticipation . 90
5.3.3 Localization along a Path . 95
5.3.4 Control from Prediction . 98
5.3.5 Reinforcement Learning . 101

6 Discussion 104
6.1 Achievements . 104
6.2 Contributions . 107

6.2.1 Developmental Robotics . 107
6.2.2 Learned Robot Navigation . 108

7 Conclusion 111
7.1 Summary . 111
7.2 Future Work . 112

Reference List 114

vi

List Of Figures

2.1 A single perceptron . 5
2.2 A feed-forward neural network . 6
2.3 Propagation algorithm . 7
2.4 Backpropagation algorithm . 7
2.5 An Elman network . 10
2.6 Reinforcement learning . 13
2.7 State, actions, and rewards . 13
2.8 A grid world task . 14
2.9 Grid world task solution . 17
2.10 Q-Learning algorithm . 19

3.1 Example metric map . 23
3.2 Example topological map . 24

4.1 Basic developmental system . 34
4.2 Proposed abstraction layer . 40
4.3 Predictions from a multi-step prediction network 42
4.4 Proposed abstraction and anticipation system 44
4.5 Abstraction training algorithm . 44
4.6 Anticipation training algorithm . 45
4.7 Alternating sequence 1-step prediction training 47
4.8 Alternating sequence 9-step prediction training 47
4.9 Predictive control algorithm . 48
4.10 Offline prediction error computation 51
4.11 Online prediction error computation 52
4.12 Paths through an indoor environment 55

5.1 Grid world environment . 59
5.2 Overlapping grid world path . 61
5.3 Different grid world path . 62
5.4 Grid world training 1-step prediction and 20 hidden nodes 64
5.5 Grid world training 1-step prediction and 40 hidden nodes 65
5.6 Grid world training 1-step prediction and 80 hidden nodes 66
5.7 Grid world training 10-step prediction and 20 hidden nodes 67

vii

5.8 Grid world training 10-step prediction and 40 hidden nodes 68
5.9 Grid world training 10-step prediction and 80 hidden nodes 69
5.10 Grid world offline prediction errors 71
5.11 Grid world online prediction errors 74
5.12 Activation of hidden node 17 on 6 grid world paths 75
5.13 Activation of hidden node 22 on 6 grid world paths 76
5.14 Activation of hidden node 28 on 6 grid world paths 77
5.15 Grid world path following 1-step prediction 80
5.16 Grid world predictive control performance 81
5.17 Grid world Q-Learning performance 86
5.18 Simulated robot environment . 87
5.19 Sonar abstraction . 90
5.20 Simulated robot 1-step prediction training 91
5.21 Simulated robot 80-step prediction training 92
5.22 Simulated robot 1-step offline prediction errors 93
5.23 Simulated robot 80-step offline prediction errors 94
5.24 Simulated robot 80-step 80-hidden node online prediction errors . . . 95
5.25 Different path for simulated robot . 96
5.26 Simulated robot prediction errors on a different path 97
5.27 Similar path for simulated robot . 97
5.28 Simulated robot prediction errors on a similar path 98
5.29 Memorizing motor control along a path 99
5.30 Robot control from prediction . 100
5.31 Simulated robot reinforcement learning 102
5.32 Q-Learning path following . 103

viii

Abstract

Robot localization is traditionally achieved using explicit map-based representations.

However, this approach tends to be task and environment dependent. Different lo-

calization algorithms are typically needed for robots that operate in different envi-

ronments, use different sensor modalities, or have different degrees of freedom. The

design of these algorithms is often similar, but there are enough differences to make

the transitions difficult and time consuming. To shift the burden from robot de-

signers to the robots themselves, we propose to remove the dependence on known

representations and to let robots develop implicit internal representations. Implicit

localization is developed through the processes of abstraction and anticipation. Eval-

uation is performed by measuring performance at the given task. This formulation

allows localization to be learned in a general manner, as needed by the task at hand.

This approach simplifies robot design and allows for the creation of more flexible

robots.

ix

Chapter 1

Introduction

Robot localization is a foundational problem in mobile robotics. All but the sim-

plest mobile robots need to perform some form of localization. The best known

localization techniques use advanced algorithms that probabilistically integrate sen-

sor information into a model of the world. While these techniques work very well,

they also tend to be complicated. We propose to construct a localization system

using no domain specific knowledge. Such a system should work in a wide variety

of environments with only simple changes.

1.1 Localization as a System Property

Most research into robot localization is focused on localization as a goal in and of

itself. By focusing only on localization it is possible to develop algorithms that can

be used by robots to carry out a wide variety of complex tasks. Given a working

localization system, it is significantly easier to develop a robot that performs useful

behaviors.

1

However, the ability to perform a desired behavior is more important than lo-

calization alone. The ability to localize is a necessary property of a system that

performs complex navigation tasks, but it is not the primary purpose of the sys-

tem. Instead of using a carefully engineered algorithm for localization, we propose

to design a system capable of building an internal representation of a task. If the

task requires localization, then the internal representation must include information

necessary for localization.

We will attempt to design such a system using developmental processes and

machine learning. Unlike traditional localization, such a system is incapable of

reporting its position to a person in an explicit, predefined representation. Instead,

it performs localization only as needed to complete the given task, and the current

location of the robot is encoded in an unknown internal representation.

1.2 Overview

Chapter 2 provides background information on the field of machine learning. Ar-

tificial neural networks and reinforcement learning are described in detail, and are

used throughout the remainder of the thesis.

Chapter 3 describes the basic localization problems. A distinction is made be-

tween implicit localization and explicit localization, and motivation for implicit lo-

calization is provided.

Chapter 4 considers the design of a system for implicit localization. Develop-

mental robotics is used as a starting point, and an entire system for abstraction and

anticipation is presented.

2

Chapter 5 explores the use of implicit localization in a grid world and on a

simulated robot. Results are both presented and analyzed.

Chapter 6 continues the analysis from the previous chapter. Starting from what

our results have shown, practical applications for implicit localization are presented.

Also, the relationship of this work to previous works concerning both developmental

robotics and learned robot navigation is discussed.

Chapter 7 summarizes the major achievements of this work. Areas that need

further work are also explored, as both short and long term goals are given.

3

Chapter 2

Neural Networks and Reinforcement Learning

In order to learn robot localization, we will rely on well-established machine learning

techniques. Although these techniques provide a solid backbone, combining them

appropriately for a particular task is still a challenge. Machine learning is an ex-

pansive field, and we will only discuss two of its subfields here: neural networks and

reinforcement learning.

2.1 Neural Networks

Artificial neural networks are connected systems of simple components that derive

their expressional power from the manner in which they are connected. Although

they are loosely based on biological systems, the biological connection is of little

importance to this work.

Rosenblatt (1958) developed the first neural network, the perceptron. The per-

ceptron can be defined by a thresholded dot product operation, but it is more instruc-

tive to examine it visually as in Figure 2.1. By adjusting the weight, wi, associated

with input, xi, the value of the output can be influenced. For any linearly separable

4

x0

xn

...

x2

x1

w0

wn

w2

w1

b

sign(x . w + b)

Figure 2.1: The components of a single perceptron unit.

binary function, there is a set of weights, w, to model the function (Minsky and

Papert, 1969).

Neural networks have come far from their simple beginnings. Modern network

architectures are capable of expressing much more than binary functions. In the

remainder of this section we will discuss three distinct types of networks that have

emerged.

2.1.1 Feed-Forward Networks

The most common type of neural network is the feed-forward network. Feed-forward

networks combine multiple perceptron-like units into an acyclic network. An exam-

ple network with four input units, three hidden units, and two output units is shown

in Figure 2.2. Such a network can be used to approximate a function with four

inputs and two outputs.

In order to increase the generality of the network, the perceptron units are re-

placed with units that output continuous instead of thresholded values. It is still

desirable to restrict the values to a known range, so the output of each node can be

5

Input Layer Hidden Layer Output Layer

Figure 2.2: A feed-forward neural network. Although the input units are drawn like
the other units, they do not do any processing and merely pass data through to the
next layer.

passed through an activation function that will limit the range. While any function

can be used, sigmoid and tangent functions are particularly popular. Figure 2.3

demonstrates how to compute the output of a network using possibly different acti-

vation functions on each layer.

The usefulness of such multi-layer networks was in doubt until a method was

developed that could be used to iteratively adjust the weights of the network (Wer-

bos, 1974; LeCun, 1985; Rumelhart et al., 1986). The method, backpropagation,

requires an input with a known output in order to modify the weights. Therefore,

it is a supervised machine learning algorithm. The full backpropagation algorithm

is presented as Figure 2.4. A complete derivation of the algorithm is available in

Mitchell (1997), but is not included here. In order to use backpropagation, the

activation function for each layer must be differentiable.

Backpropagation is a gradient-descent learning rule. It computes the error at the

output nodes by finding the difference between the training data and the network

outputs. Further back in the network, error is attributed to the hidden nodes based

6

Propagation
I = network input
l = number of layers of weights
W = array of weight matrices for each layer (Wijk is the weight

on layer i for the connection from node k on the previous
layer to node j on the next layer)

O = array of output vectors (column vectors) for each layer
F = array of activation functions for each layer
O1 = I
for i = 1 to l

Oi+1 = Fi(WiOi)
return Ol+1

Figure 2.3: The propagation algorithm for a feed-forward network with fully con-
nected layers and arbitrary activation functions at each layer.

Backpropagation
I = training input
T = training output
α = learning rate
l = number of layers of weights
W = array of weight matrices for each layer (Wijk is the weight

on layer i for the connection from node k on the previous
layer to node j on the next layer)

O = array of output vectors (column vectors) for each layer
F = array of activation functions for each layer
E = array of error vectors (column vectors) for each layer
O1 = I
for i = 1 to l

Oi+1 = Fi(WiOi)
El = F ′

l (Ol+1) · (T −Ol+1)
for i = l to 2

Ei−1 = F ′
i−1(Oi) · (WT

i Ei)
Wi = Wi + αEiO

T
i

W1 = W1 + αE1O
T
1

Figure 2.4: The backpropagation algorithm for a feed-forward network with fully
connected layers and arbitrary activation functions at each layer.

7

on how strongly they are connected to the each node on the next layer. The network

weights are then adjusted in order to reduce the error. The amount to adjust each

weight is specified as the learning rate. A learning rate of one attempts to remove

all the error in one step, while a learning rate of zero does not adjust the weights.

A learning rate close to zero is usually used, and training instances are repeatedly

presented to the network. Using a low learning rate causes the weights to be adjusted

slowly, and makes the system more likely to converge to a good approximation of

the target function. In contrast, a high learning rate encourages drastic adjustments

that can make the system unstable.

In certain cases, the backpropagation learning rule will not learn a solution that

minimizes the total error. Instead, it learns a solution that minimizes the error

locally, but is not a global minimum. A better solution exists, but backpropagation is

unable to find it. The use of a momentum term is a common solution to this problem.

The previous weight adjustment for each weight is stored, and when weights are

next adjusted part of the adjustment comes from the previous adjustment. The

momentum term is used to scale the previous adjustment. If momentum was one

the entire adjustment would be used again, while at 0.5 only half of the previous

adjustment is used. Momentum allows backpropagation to skip over local minima

without becoming caught and accelerates learning when similar weight changes are

repeated. Although useful, momentum can be difficult to apply well. The best value

for momentum is task dependent and difficult to estimate (Riedmiller and Braun,

1993).

Feed-forward backpropagation neural networks have shown success at a wide

variety of tasks. A backpropagation neural network can be used on almost any task

8

that can be reduced to function approximation. Rumelhart et al. (1994) provide

an overview of the kinds of tasks that are appropriate for backpropagation neural

networks.

Backpropagation can be slow to learn. More advanced techniques such as Quick-

prop (Fahlman, 1988) and RPROP (Riedmiller and Braun, 1993) can be used to

increase the learning speed in many problem domains. In this thesis, backpropaga-

tion will be used for its theoretical simplicity.

2.1.2 Recurrent Networks

The shortcoming of feed-forward networks is their inability to model sequences. A

feed-forward network provides a direct mapping from input to output, but it does

not take history into account. Recurrent networks are designed so that the state of

the network at previous time steps influences the current network output. This class

of neural networks can solve problems that simple feed-forward networks are unable

to, but at the cost of additional complexity.

The first proposed method for recurrent networks was Backpropagation Through

Time (Rumelhart et al., 1986). This method copies the states of each previous input

and hidden layer value. Then, when backpropagation is performed the computed

gradient takes into account the current state as well as the history. This method

creates significant overhead, and it is only practical if the number of previous states

stored is limited.

Elman (1990) proposed that storing just the hidden layer values from the previous

timestep would be sufficient for some tasks. This type of network, now known as

an Elman network, is the simplest form of a recurrent network. Elman used it

9

Figure 2.5: An Elman network with two inputs, three hidden units, and two output
units. The hidden units’ outputs are fed back into the network as inputs.

successfully in work predicting speech patterns. Recently, Elman networks have

been used to predict future sensor states on mobile robots (Nolfi and Tani, 1999;

Blank et al., 2005). An Elman network is shown in Figure 2.5.

More advanced types of recurrent networks have been proposed. Notably, Real

Time Recurrent Networks (Williams and Zipser, 1989) and Long-Short Term Mem-

ory (Hochreiter and Schmidhuber, 1997) allow recurrent networks to store more

information for longer periods of time than Elman networks or limited Backpropa-

gation Through Time. Recurrent networks are still an area of active research, and

only the simplest form of recurrent networks, Elman networks, will be used in the

remainder of this thesis.

10

2.1.3 Self-Organizing Maps

While feed-forward and recurrent networks are both supervised learning systems,

self-organizing maps (Kohonen, 1984) are neural network systems that are self-

supervised. Much like clustering algorithms, self-organizing maps classify data into

a set of groups based on similarity.

Self-organizing maps (SOMs) are defined by a set of neurons arranged in a lattice.

The lattice specifies a network topology that can be used to define a neighborhood

for each neuron. As in the other types of neural networks, each neuron has a set of

weights associated with it. When the network is evaluated for an input, the input

vector is compared to the weight vector of each neuron. The neuron with the closest

match is the winner. The output of the winning neuron is activated, while all other

outputs are cleared.

When training a SOM, the weights of the winning neuron are adjusted so that

they more closely match the input. Neurons in the neighborhood of the winning

neuron are adjusted toward the input vector to a smaller degree. Over time, the

network attempts to learn a mapping such that for any input there will be at least

one neuron that closely matches.

While SOMs are not used directly in this thesis, much previous work in the field

depends on them (Blank et al., 2005; Provost et al., 2001, 2004, 2006; Madokoro

et al., 2003), and any discussion of neural networks would be incomplete without

mentioning them.

11

2.2 Reinforcement Learning

Reinforcement learning (RL) is a subfield of machine learning in which learning oc-

curs through interaction with an environment (Sutton and Barto, 1998). Of all types

of machine learning, reinforcement learning is probably the easiest type to explain to

people outside the field. From learning to ride a bike to training a dog, people have

experienced situations where learning results from interaction. By rewarding good

behavior and punishing bad behavior, it is possible to teach an agent to interact

intelligently with its environment in order to achieve a goal.

The basic idea of reinforcement learning is quite simple, but the first comprehen-

sive works on the subject did not emerge until the late-1980s (Sutton, 1988), and

the most influential books appeared almost a decade later (Sutton and Barto, 1998;

Bertsekas and Tsitsiklis, 1996). Although it is now better understood, reinforce-

ment learning is still a relative newcomer to the field of machine learning. The most

notable success in RL is the TD-Gammon backgammon player by Tesauro (1995).

While there have been many other successes (see Sutton and Barto (1998)), TD-

Gammon was able to outperform all other learning techniques and is able to play

backgammon better than human grandmasters.

Reinforcement learning algorithms typically model problems as Markov Decision

Processes (MDPs). In such a formulation, the problem is defined by states, actions,

and rewards. The goal of an agent is to maximize the amount of reward it can

receive. Figure 2.6 shows the basic structure of a reinforcement learning system.

An agent interacts with its environment by performing actions in response to

state information. After an action is performed the agent receives a reward signal

12

Agent
ActionState

Reward

Environment

Figure 2.6: A reinforcement learning agent learns through interaction with an envi-
ronment.

st+1
at+1 rt+2st rt+1

at

Figure 2.7: A sequence of states, actions, and rewards as observed by an agent.

13

G 0 0 1

0

0 0 0

100

0

00

s0 s1 s2 sG

s3 s4 s5

s6 s7

s8 s9 s10 s11

Figure 2.8: A grid world navigation task where the goal is to reach cell G. On the
left we have a map of the grid world, and on the right we show the problem as an
MDP. Nodes are possible states, edges are possible actions, and edge labels show the
reward for each action. Reward is always 0 except for when moving into the goal
state, in which case the reward is 1. The task ends when the goal state is reached.

and updated state information from the environment. This process is repeated until

the task is finished. Figure 2.7 shows such a sequence of states, actions, and rewards.

Over time, the agent attempts to improve its performance by learning which actions

lead to rewards. From a state, st, the agent wants to choose an action, at, that will

lead to high future rewards: rt+1, rt+2, · · · , rt+n. This is a difficult problem because

the effects of a single action on future rewards is often unclear.

In a simple problem, states, actions, rewards, and the relationships between

them may be known in advance. The grid world navigation task in Figure 2.8 is an

example of such a task. Figure 2.8 also demonstrates how a task can be represented

as an MDP.

14

2.2.1 Action-Value Functions

When navigating the grid world in Figure 2.8, each action has a known consequence

and a known reward. To learn the navigation task, every possible state-action pair

is associated with an expected cumulative reward. By convention, we refer to these

values as Q-values, and the function that produces them as Q(s, a), where s is a

state and a is an action. The action-value function, Q, can be used to guide an

agent toward future rewards.

It is also possible to associate reward directly with states, and use a similar

function, V (s), to represent the cumulative reward from a particular state. In order

to use a value function, V , for control, we need to be able to generate successor states

for all possible actions. Using action-value functions instead allows us to easily use

these techniques even when the actions have unknown results.

From state s an agent can evaluate all possible actions and choose an action

a such that Q(s, a) has the highest possible value. In order to achieve optimal

performance, we need an action-value function that exactly predicts the cumulative

reward. We will call such a function an optimal action-value function, Q∗. The

optimal action-value function defines a policy that an agent can follow to achieve

maximum reward.

From state st an agent takes action at, receives reward rt+1, and arrives in state

st+1. As long as we follow the policy given by Q∗, the optimal action-value function

gives the sum of all subsequent rewards:

Q∗(st, at) = rt+1 + rt+2 + rt+3 + · · ·+ rt+n (2.1)

15

If the task does not end, some actions may lead to infinite reward. If all possible

actions had an infinite expected reward there would be no reason to pick any action

over another. We can handle this problem by introducing a discount rate parameter,

γ:

Q∗(st, at) = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γn−1rt+n (2.2)

The optimal action-value function now gives the discounted cumulative reward. If

the discount rate is one, the task is undiscounted. In addition to ensuring that the

Q-values never reach infinity, the discount rate also gives preference to reward that is

received sooner rather than later. This is often useful because we can be less careful

when defining a reward function. For the task in Figure 2.8, moving randomly will

eventually reach the goal, so Q∗(s, a) = 1 for all s and a if the task is undiscounted.

However, by discounting the reward we encourage the agent to reach the goal state

quickly.

Because Q∗ exactly predicts future rewards, it is possible to write Equation 2.2

as a recursive equation:

Q∗(st, at) = rt+1 + γ max
at+1

Q∗(st+1, at+1) (2.3)

Learning Q∗ allows us to have optimal performance at a task. For the task in

Figure 2.8, actions that move us into the goal state have a Q∗-value of 1. Q∗-values

for actions that are further removed from the goal state can be computed recursively

using dynamic programming. The policy derived from Q∗ is shown in Figure 2.9.

When state transitions or rewards are unknown, dynamic programming can not

be used to find an exact solution to the problem. Even when the system is completely

16

G

Figure 2.9: A solution to the grid world task.

understood, if there are too many states then dynamic programming can not be used

to solve the full problem exactly. In this case, temporal difference (TD) learning can

be used in place of dynamic programming to iteratively approach a solution. When

using TD learning, differences between successive approximations are used to update

the action-value function. At state st, action at has an expected value of Q(st, at).

If Q is optimal, then Q(st, at) should exactly equal the reward received, rt+1, plus

the discounted future reward, γQ(st+1, at+1). The TD error is the amount the two

values differ. Algorithms that attempt to minimize the TD error are called temporal

difference learning algorithms.

Samuel (1959) was the first to use the basic idea of TD learning, and was able to

teach an agent to play checkers at a reasonable level. Tesauro (1995) also used a TD

learning algorithm for his backgammon agent. These TD algorithms approximated

a value function instead of an action-value function because state transitions were

known in advance. The remainder of this section gives two specific TD learning

algorithms that learn an action-value function.

17

2.2.2 Q-Learning

The Q-Learning algorithm (Watkins, 1989) maintains an approximate action-value

function, and derives its policy directly from the approximated function. If the

algorithm always took the optimal action according to the current approximation, it

would risk becoming caught in cycles in which the best actions could be overlooked

if other actions seemed better. In order to avoid this, it is sometimes necessary to

explore the solution space by trying actions which seem less than optimal. This is

especially important in non-static environments. Q-Learning is able to do this while

still learning an optimal policy.

While there are multiple ways to encourage exploration, a simple and common

option is to define a parameter, ε, that gives a ratio defining how often to take

random actions. Such a learner is said to follow an ε-greedy policy. It usually

takes the greedy action with respect to the current policy, but it randomly takes

exploratory actions.

Q-Learning is a TD learning algorithm, so it adjusts its action-value function

based on the TD error at each timestep. When learning starts, the Q-function is

initialized arbitrarily, and over time it is adjusted to more closely reflect reality.

Starting from state st, an action at is chosen. This action may be an exploratory

action or the greedy action. After taking action at and receiving reward rt+1, we

arrive in state st+1. We can define an equation similar to Equation 2.3 for the

approximate action-value function:

Q(st, at) ≈ rt+1 + γ max
at+1

Q(st+1, at+1) (2.4)

18

Q-Learning(s0, a0, r1, · · · , st−1, at−1, rt, st)
if taking the greedy action

choose at to maximize Q(st, at)
else

choose at randomly
if t > 0

TDerror = rt + γ maxat Q(st, at)−Q(st−1, at−1)
Q(st−1, at−1) = Q(st−1, at−1) + αTDerror

return at

Figure 2.10: The Q-Learning algorithm to find the next action.

Unlike Equation 2.3, this is only an approximation. Subtracting the left-hand side

from the right-hand side yields the TD error:

TDerror = rt+1 + γ max
at+1

Q(st+1, at+1)−Q(st, at) (2.5)

Effectively, the TD error gives the inconsistency between the two approximations.

In order to improve the approximation, we want to reduce the inconsistency. If we

assume the most recent approximation, Q(st+1, at+1), is correct we can adjust the

first approximation based on the TD error:

Q(st, at)← Q(st, at) + αTDerror (2.6)

As was the case for neural network updates, a learning rate, α, is used to moderate

changes to the function. Q-Learning is performed over many iterations, and giving

too much weight to the TD error would likely result in undesired oscillations. A

low learning rate stabilizes the learning algorithm and allows better solutions to

be reached. The learning rate can be varied over time to improve learning. The

complete algorithm is in Figure 2.10.

19

The major innovation of Q-Learning is off-policy learning. When the TD error is

found, the greedy action is used in the computation. However, when the next action

is selected we may decide to take an exploratory action instead. Computing the

TD error based on the greedy action allows Q-Learning to converge to an optimal

policy even though it takes exploratory actions. In this way, Q-Learning can learn

the optimal policy while using an ε-greedy policy.

20

Chapter 3

Mobile Robot Localization

As a mobile robot traverses its environment, it is usually necessary for the robot to

maintain a concept of its current location. Depending on the task to be completed,

the level of detail may vary. A delivery robot probably needs to know its location in a

global coordinate system, while a floor sweeping robot may only need to understand

the world directly around it. In both cases, the robots are solving some version of

the localization problem.

Typically, roboticists have attempted to localize their robots using map-based

representations. Thrun (2002) provides a thorough overview of conventional ap-

proaches. While these conventional approaches are map-based, localization as dis-

cussed here is independent of the representation used. Any robot that is capable of

determining its position, whether absolutely or relatively, is performing localization.

With this understanding, a map-based representation is not a precondition for lo-

calization. A robot can perform localization with respect to its own understanding

of the world, without needing that understanding to be an explicit map.

21

3.1 Localization Strategies

Before describing the localization problem in detail, it is helpful to describe repre-

sentations that can be used for describing the location of a robot. In choosing a

representation, a roboticist is constraining the localization system in several ways.

A robot that moves in two-dimensions can represent its location with (x, y) coor-

dinates on a two-dimensional map, but this is clearly insufficient for a robot that

moves in three-dimensions. Likewise, a robot with only laser range-finders cannot

use a map made up of photographic images.

It is possible to define two distinct strategies for localization. The first, explicit

localization, uses a representation designed in advance by the roboticist. The robot

is then responsible for localizing itself with respect to the chosen representation.

The second strategy, implicit localization, does not rely on a fixed representation.

A robot can have a concept of where it is without being able to specify its location

in a predefined representation.

3.1.1 Explicit Localization

In explicit localization, a robot maintains a concept of its current location in a prede-

fined representation. Robots capable of performing complex localization tasks have

usually followed this localization strategy. Using a known representation provides

several benefits, as discussed hereafter.

Designing a system with known inputs and known outputs is much more straight-

forward than designing a system that uses an unknown representation. An explicit

localization system can easily be tested because there is always a right answer for

22

Figure 3.1: An example of a two-dimensional metric map.

the system to output. The robot only exists at a single location, if the localization

system gives back the wrong location, then it is relatively easy to debug the system

and attempt to fix the error.

A robot that performs explicit localization is also easy to send commands. The

robot “speaks” the language that its designer used. A robot that localizes in (x, y)

coordinates can be told to go to coordinate (10.0, 5.0), and the robot should end

up close to the desired location if the localization system works properly and no

unforeseen errors occur.

People are accustomed to using maps. Maps are a straightforward representa-

tion for the localization problem, and it is natural that people would attempt to

build their robots to use maps also. Maps used on robots can be divided into two

classes. Metric maps encode absolute distances in a global coordinate system, while

topological maps encode distinctive places and the connections between them. The

two types of maps are illustrated in Figures 3.1 and 3.2

Metric maps can be thought of as world-centric. The focus of a metric map is

accurately placing features in a global coordinate system. The robot is then able

23

Room 1 Room 2

Room 5Room 4
Room 3

Figure 3.2: An example of a topological map.

to localize by observing features in its environment and comparing against known

locations.

On the other hand, topological maps are robot-centric. A topological map en-

codes observations as landmarks, and is able to determine its relative location if it

observes a distinctive landmark. If the robot remembers how to navigate from one

landmark to another, it is not necessary to use a global coordinate system. The

robot can navigate the set of connected landmarks without needing to know exact

spatial relationships.

It is also possible for metric and topological maps to be combined. Vaughan et al.

(2002) designed a system that allowed robots to travel between places on trails. The

presence of distinct places makes the system similar to topological maps, but the

trails were described in metric coordinates. The trails only encoded how to travel

from place to another. Therefore, unlike a traditional metric map, a trail did not

need to be defined in a global coordinate system. Instead, a trail is essentially a set

of directions that a robot can follow to move from one place to another.

24

Metric maps have desirable properties often lacking in topological maps. When a

robot builds a metric map of an environment, it creates a representation that tells the

robot where it is over the full range of its environment. In contrast, on a topological

map the robot only knows about certain distinctive places in the environment and

can only move between adjacent places. Therefore, robots with metric maps have a

greater degree of freedom to choose how to move through their environment, while

topological maps limit the available paths.

3.1.2 Implicit Localization

Animals have amazing localization abilities. Some animals routinely travel for hun-

dreds of kilometers and are capable of returning to known locations. In contrast,

robots have somewhat limited abilities. Robots that localize themselves on internal

maps are only able to explore areas on the scale of a few kilometers.

The Global Positioning System (GPS) is a common solution to this problem for

robots that travel large distances in outdoor environments. Using GPS allows a robot

to know its exact location almost anywhere in the world. While GPS is incredibly

useful, it is not universally available. Robots that work indoors or underwater are not

able to receive GPS signals. While GPS provides a robot with global information,

more common sensors provide only local information. For example, laser range-

finders, sonars, and cameras are common on robots. We are interested in using

these types of sensors instead of sensors such as GPS that provide a “quick-fix”

localization strategy.

Explicit localization has been shown to work very well in a large number of cases.

However, examining other possible localization strategies may also be worthwhile.

25

When using a metric map, a robot can be given a command such as goto (x, y).

Specifying commands in this format is only easy for a person who has access to the

same metric map. To a lesser extent, specifying commands based on a topological

map, such as goto Room 1, still require that the person know the locations and

names of the nodes in the map. Ideally, we would like a robot that understands

commands in human terms. Map-based representations do not directly allow this.

If the task was to interact with people in an unstructured environment, the

robot would need to interpret human commands. In such a case the representation

must be somehow compatible with the representations that people use. On the

other hand, if the task was to drive down a highway the representation could be

completely different. In general, there is no single best representation. Instead, the

best representation for a task depends on the nature of the task. Using a predefined

and explicit representation forces a robot to use a representation that may not be

specialized for its current task.

The idea of implicit localization is to remove the dependence on a map, and

let a robot use whatever representation allows the robot to accomplish its specified

task. In implicit localization, a robot maintains a concept of its current location

without explicitly localizing itself on a map. The robot must have some form of

internal representation, but the exact form of the representation is flexible and task-

dependent. The only role of the representation is to allow the robot to perform its

task, so the representation does not need to be interpreted outside of the robot. It is

even possible for the robot to choose its own representation. Such a representation

can be extremely well suited to a particular task.

26

The choice of representation is of primary importance to implicit localization.

In order to create a system capable of implicit localization, we will design a system

that builds an internal representation of a task. If the task requires the robot to

maneuver through its environment and perform actions in specific places, then a

representation of the task must include the ability to recognize those places. The

ability to recognize places demonstrates implicit localization.

Implicit localization is similar to localization on a topological map. When using

a topological map, the robot can be localized only at a node on the map. For

example, if a robot has a topological map that only has nodes on the perimeter

of the room, then it can not accurately localize itself in the interior of the room.

Likewise, an implicit localization system is only capable of localizing the robot while

it is performing the task that the representation was designed for. Because of this,

implicit localization is much more limited than explicit localization on a metric map.

The combination of machine learning and implicit localizations holds promise.

A robot should be able to learn a localization strategy that is specially designed for

whatever task the robot is performing. There has already been at least one success

in this area; Nolfi and Tani (1999) demonstrated a robot that used a neural network

representation to implicitly localize itself as it followed the walls around a simple

environment.

3.2 Localization Problems

The localization problem can be broken into three subproblems: position tracking,

global localization, and simultaneous localization and mapping. These subproblems

27

were formulated for localization on map-based representations, but they can be easily

generalized for localization in arbitrary representations.

3.2.1 Position Tracking

Given a known initial position and a representation of its environment, a robot

performing position tracking is able to update its known position as it moves through

its environment. Position tracking is the simplest of localization problems, and any

localization method must be able to perform this task.

A robot that estimates its position using odometry information is performing

a very simple form of position tracking. Odometry information is generally not

accurate enough to be useful over long distances. Another method is needed in

order to constrain the maximum amount of error that will occur over time. Other

sensors such as sonars or laser range-finders usually perform this role.

Robots that only perform position tracking can be unable to recover from large

localization errors. If the estimated position is sufficiently different from the actual

position, the robot will receive contradictory sensory information and be unable to

re-localize itself correctly. Such an occurrence would be fatal to a robot that could

only perform position tracking.

3.2.2 Global Localization

Global localization is the ability of a robot to find its location on a map starting

from a state in which the robot has no knowledge of its current position. This is

sometimes referred to as the “kidnapped robot” problem. Position tracking and

28

global localization are complimentary problems that are often solved by a single

system.

Monte Carlo localization (Dellaert et al., 1999) is a well-known algorithm that

performs both tasks concurrently on a metric map. Monte Carlo localization is a

probabilistic method that uses a particle filter to estimate the current robot location.

The distribution of particles indicates a hypothesis for the location of the robot.

There may be a single tight cluster of points, which indicates the robot knows where

it is; there may be two or more clusters, which indicates the robot thinks it could be

in several different locations; or the particles may be distributed evenly across the

environment, which indicates that the robot has no idea where it is. Depending on

the distribution, the algorithm can scale from position tracking to global localization.

3.2.3 Simultaneous Localization and Mapping

The last localization problem is Simultaneous Localization and Mapping, or SLAM.

In the SLAM problem, a robot does not have a representation of its environment

in advance. Through exploration the system must build a representation of its en-

vironment. SLAM is generally considered the most important localization problem,

and it is also the most difficult. Truly autonomous robots must have the ability to

explore and learn to navigate unknown areas.

When mapping a new environment, a robot will usually revisit states that have

already been mapped. It is important that the robot is able to recognize when it

is revisiting a state, and not add redundant or incorrect information to the map.

This requires position tracking when moving in the established map, and global

29

localization when finding new routes to already mapped locations. Therefore, a

robust localization system must handle all three subproblems.

Successful approaches to the problem have been developed using both metric and

topological maps (e.g. Eliazar and Parr (2005); Montemerlo et al. (2003); Davison

(2003); Duckett et al. (2002)). These works have utilized either range-finding sensors

or machine vision. The best of these approaches can build maps at the kilometer

scale.

3.2.4 Generalizations to Implicit Localization

In implicit localization, the map is replaced by an unknown internal representation.

In this case, position tracking and global localization cannot be viewed as pinpoint-

ing the robot location on a map, but should be viewed as minimizing the current

confusion of the robot. During position tracking, the internal representation should

change predictably. When the internal representation changes unpredictably the

robot is confused, and global localization is necessary in order realign the internal

representation with reality.

The concept of SLAM is somewhat harder to define in implicit terms. The

primary goal behind SLAM is not usually to get a map back from the robot. Instead,

the goal is for the robot to understand its environment well enough that it can

interact with its environment in an intelligent manner. The key reasons for SLAM

are more concerned with autonomy than map building. A robot should be able

to understand its environment without needing help from people. If it could do

that, few people would care if it used implicit localization instead of a map-based

representation.

30

A system that can build representations capable of implicit localization can be

used to lessen the burden placed on a robot developer. Where explicit localization

algorithms often rely on specific sensors and types of environments, a system that

can design its own representation should be able to use a wide variety of different

sensors and operate in a wide variety of environments.

The combination of machine learning and implicit localization promises more

general solutions to the problem of mobile robot localization. While it is doubtful

that a robot would learn a localization strategy on the level of a well-designed al-

gorithm written for a specific environment, it is hoped that a robot can learn “well

enough” to complete an intended task.

31

Chapter 4

Developing Implicit Localization

A robot that could learn how to perform localization would be much more flexible

than a robot painstakingly programmed to localize itself in a single type of environ-

ment. This chapter describes the concept of developmental robotics and describes

how the same ideas can be used specifically for localization.

4.1 Developmental Robotics

Conventionally, robots are designed and programmed to perform a specific task in a

specific environment. It is the job of the human designers and programmers to break

down the task and find ways to perform each necessary component. This process

can be difficult, but is acceptable in many situations. For example, a manipulator

arm in a factory can successfully be built to perform its task very well.

In less controlled environments, designing a robot that can perform well is more

difficult. The goal of developmental robotics is to allow robots to go through a

developmental process much like young children. Starting from a tiny amount of

knowledge, a human infant is able to acquire new knowledge from its environment.

32

If a robot could perform a similar process, then the robot designer would only need to

build in simple knowledge. Lungarella et al. (2003) give an overview of development

in both humans and robots.

A robot should be able to understand its sensor data better than a person can.

While it is natural for people to talk to each other in high level terms, it is probably

not appropriate to attempt to talk to a robot in the same way. For example, people

understand concepts like hallways, rooms, and windows. When designing a topo-

logical map, it is natural to create nodes for such areas. However, those locations

might not be distinguishable by a robot with a limited number of sensors. People

designing robots are so connected with how they experience the world that they

cannot fully understand how a robot perceives its world. Blank et al. (2005) call

this anthropomorphic bias. By letting a robot develop its own understanding of the

world, it will understand and interact with the world in the best way it can. It is

no longer forced to do things in the way a person would.

While developmental processes in animals are complex, we will isolate and use

only two important concepts: abstraction and anticipation. Nolfi and Tani (1999)

and Blank et al. (2005, 2002) recognized and made use of these two concepts in their

works. Although the implementations used by Nolfi, Tani and Blank were quite

different, the concepts in use are the same.

Sensor input on mobile robots can be high-dimensional, and working with raw

sensor data is often impractical. In order to reduce the amount of data, a develop-

mental process uses abstraction. Abstraction reduces the total amount of data while

retaining the important pieces of information. A good abstraction can dramatically

33

Abstraction

Anticipation
Context

Sensorimotor State

Representation

Prediction

Figure 4.1: A simple developmental system.

simplify the data and make it much easier for other processes to efficiently make use

of the important information.

The second important concept is anticipation. While abstraction reduces the

total amount of information to consider, anticipation learns about sequences of data.

Given a current state and an action, anticipation attempts to predict the outcome.

Being able to correctly anticipate the results of an action shows an understanding

of the system dynamics. If system dynamics are sufficiently understood, then it is

possible for the robot to take actions so as to cause a desired state to occur. In this

way, anticipation builds a model that a robot can use to understand its interactions

with the environment.

While abstraction can be performed with no knowledge of the past, correctly

predicting the future often requires previous knowledge. If a robot is attempting to

drive to a blue ball outside its current field of view, it must have some memory of

where the ball was last seen. Without such knowledge it is impossible to predict

where the ball is now.

34

A simplified version of the system used by Nolfi and Tani (1999) and Blank

et al. (2005) is shown in Figure 4.1. Abstraction and anticipation are joined into a

multi-layer system, where higher layers receive input from lower layers. First, the

abstraction layer receives the sensorimotor information from the robot and forms

an abstract representation based on the input. Then, the anticipation layer uses

the abstract representation and the current context to produce a prediction and a

new context. The current context is the only form of memory in the system. The

prediction output must predict something about the future, but what exactly to

predict is not of utmost importance. Nolfi and Tani predicted the next abstraction,

while Blank predicted the next motor command.

Both Nolfi and Tani (1999) and Blank et al. (2005) claim that multiple layers

of abstraction and anticipation can be combined, but neither demonstrate the use

of such a system or describe it in great detail. Instead, they chose tasks simple

enough that one layer of abstraction and one layer of anticipation could complete

the required task. We take a similar approach in this work, but we also attempt to

increase the representational power of the lower layers.

The major benefit of multiple layers is that each layer can run at a different

timescale. The first layer can make predictions every second while higher layers can

predict how lower level representations will change. This temporal abstraction can

allow for the representation of longer and more complex behaviors.

However, this benefit is also a drawback. It is not obvious how a layer that

predicts events occurring far apart can provide any direct influence over the layers

35

below. As you go into higher layers, information is continually compressed, in or-

der to go back down this information must be decompressed into real-time action

sequences, and it is not clear how to perform this action.

Reinforcement learning with Options (Sutton et al., 1999) also makes use of tem-

poral abstractions. An option describes a temporally extended sequence of actions,

and by using options it is possible to more efficiently learn tasks when multiple sub-

goals are important. McGovern (2002) demonstrated the automatic creation of such

temporal abstractions. Options are useful for performing behaviors, but they do

not address the recognition of known behaviors. In contrast, the layered approach

by Nolfi and Tani and Blank et al. is designed for prediction, and it is necessary

to recognize what is currently being done in order to make accurate predictions.

Recognition is a key component of implicit localization.

It is not immediately obvious that abstraction and anticipation can be used

for implicit localization. As a robot moves through its environment, a constant

stream of sensor information and motor commands is generated. In order for a

robot to understand its relationship with the environment, it must understand the

flood of information. Abstraction and anticipation are the tools that will allow this

understanding to be developed.

4.2 Bootstrapping Learning

When a developmental robot first begins operation, it has very little knowledge of

itself and its environment. In order to train such a robot, it must have some way

36

to gather initial training data. The training data should come from purposeful in-

teractions with the environment. If the training data were obtained from random

interactions, it is unlikely that the anticipation layer would extract any useful be-

havior.

There are two approaches to building the training data. The robot can be con-

trolled with an innate behavior that is programmed into the robot, or the robot can

be controlled by a person during training. Both methods have advantages. If an

innate behavior is used, training can continue unsupervised for long periods of time.

It is not necessary for a person to guide the actions of the robot during training.

On the other hand, the innate behavior must be programmed. Depending on the

complexity of the action, it can be difficult to program the innate behavior. Also,

it is possible to make use of both types of training examples in a single system (e.g.

McGovern (2002)).

In this thesis we will attempt to learn from human examples only. This will avoid

the need to write an innate behavior. We want to learn localization from the ground

up. If we start from a working algorithm for localization, it is much less clear that

anything of value is being learned.

4.3 Learning Abstraction

Abstraction creates a compressed form of raw input. Self-organizing maps (see

Section 2.1.3) are one method of creating abstractions. Blank et al. (2005) used self-

organizing maps to form abstractions in their work. Given an input sensorimotor

state, a single node in the self-organizing map will be activated. This node represents

37

an abstraction of the input. From the active node it is even possible to get a

representative sensorimotor state.

Furthermore, if only the sensor information is used in the matching, it is possi-

ble to use a self-organizing map as a lookup table when deciding what the motor

commands should be. An obstacle avoiding robot has been constructed using only a

single abstraction layer (Blank et al., 2002). Such a system is incapable of learning

anything but the simplest behaviors. The system has no memory, so only purely

reactive behaviors can be learned in this way.

Nolfi and Tani (1999) took a somewhat different approach. The developmental

model used by Nolfi and Tani only attempted to “understand” the environment.

There was no attempt to use the learned model for control. Therefore, it was not

important to provide a direct mapping from input states to control actions. So, even

the abstraction layer could operate on sequences of data.

The abstraction layer was composed of two neural networks. The first was an

Elman network (see Section 2.1.2) trained to produce the next sensorimotor state

given the current sensorimotor state. The robot had eight infrared sensors and two

motors, so the combined sensorimotor state consisted of 10 values: eight ranges and

two motor speeds. The network had a three node hidden layer. The hidden layer

node activations were provided as input to the second neural network. This network

had no hidden layer and three outputs. Each output node had a recurrent connection

to itself. After both neural networks were evaluated for the current sensorimotor

state, the output node of the second network with the highest activation was set to

1, while the other two were set to 0. Therefore, the layer only had three distinct

outputs.

38

The design used by Nolfi and Tani (1999) performed a very similar function to a

self-organizing map. The final abstraction recognized walls, hallways, and corners.

(Blank et al., 2002) recognized the same types of inputs with a single SOM. This

is possible because these concepts are not dependent on the fact that they were

obtained from a prediction network, but are observable in the data at any individual

timestep.

Robots that only explore simple environments can require SOMs with a large

number of nodes. This is because SOMs provide a coarse distinction between nearby

states. If the robot needs to take a different action depending on how far it is from

the wall, each distance must have a corresponding node in the SOM. Still, though,

as the robot moves it passes harsh transitions from one active node to another. If

the raw input changes continuously, usually the nodes will be somewhat near each

other in the network topology, but that is not necessarily true.

The world is continuous, and forcing a discrete representation seems unnecessarily

constraining. Therefore, we will use an abstraction mechanism similar to Nolfi and

Tani (1999), but with three differences. First, we will use only a single network

and not discretize the output. Instead, we prefer to use a continuous abstraction

that recognizes fine distinctions between states. Second, we will not use a recurrent

network. The recurrent network used by Nolfi and Tani was not shown to perform a

useful function, and they reported similar performance when recurrent connections

were not used. Third, we will train the network to output the current sensor values

instead of the next sensor values. The system used by Nolfi and Tani only recognized

concepts that are apparent from a single set of sensor readings, so it is unclear

39

Sensor Data Abstraction Sensor Data

Figure 4.2: The proposed abstraction layer for learning localization. The hidden
layer representation is provided as an abstract representation of the input. The
output layer is used only during training, and can be removed afterward.

that using prediction here is necessary. This change allows the abstraction and

anticipation to be clearly separated in our system.

Motor commands will not be present in the abstraction network. After training is

completed, the output layer is removed, and the hidden values are used as an abstract

representation of the inputs. The only role of such a network is data compression.

High dimensional sensor input is converted to a lower dimensional representation.

An example network is shown in Figure 4.2. This is a very simple example of an

auto-associative neural network. See Kramer (1991) for more information about the

uses of such networks.

Sensors usually return redundant information. For example, if a single pixel on

an image returned from a camera is lost, it is usually possible to fill in the empty

pixel to a high degree of accuracy. Even if every other pixel is missing, a person

can still understand the content of the picture. Being able to compress sensor data

reflects an understanding of the relationships between individual readings, and is a

reasonable goal for an abstraction layer.

40

If the training data encompasses all situations which the robot will encounter,

sensors using different modalities can be combined in a single abstraction network. If

a robot was trained in an environment with small blue rooms and large red rooms, it

would learn to associate red vision inputs to large range readings. In general though,

it is probably better to use a different abstraction network for each sensor modality.

Data compression within a single sensor modality is more likely to learn useful

abstractions. Compressing unrelated sensor data is more likely to find coincidental

occurrences. This is one reason that motor commands will not be used as input for

the abstraction network.

4.4 Learning Anticipation

Anticipation is somewhat more difficult to learn than abstraction. The need to

retain a memory of previously observed data necessitates the use of an algorithm

that produces both a prediction and an updated context (see Figure 4.1). Recurrent

neural networks are a common solution to this problem (Nolfi and Tani, 1999; Blank

et al., 2005, 2002), and will also be used here.

Our goal is to demonstrate implicit localization, so the anticipation layer must

be designed to provide a representation of the robot’s next location given its current

location. We want our system to provide information that is useful for control.

Having a concept of location is important, but if the location information cannot be

used effectively by the robot control system, then it is of little value.

Both Nolfi and Tani (1999) and Blank et al. (2005) used Elman networks to antic-

ipate the future. However, because both sets of authors used discrete abstractions,

41

t0 t3t1 t2 t4

t0

t1

t2

t3

t5

t4

t6 t7

Predictions

T
im

es
te

ps

Figure 4.3: A cascading sequence of predictions from a three-step prediction network.

they could run their anticipation networks whenever the abstract representation

changed. This allowed the networks to be evaluated much less frequently, and to

remember longer sequences of data. However, if we have an abstract representation

that changes at each timestep, then we have to make predictions at each timestep.

Therefore, the sequence of data that we are attempting to predict is much longer

and more complex.

As discussed in Section 4.1, layers of abstraction and anticipation can be used to

build an “understanding” of complex sequences of data, but it is unclear how higher

layers can be used to directly influence the actions of the lower layers. Therefore, we

propose to extend the power of a single anticipation layer to recognize sequences that

are more complicated than current methods have allowed. In order to do this we will

replace the traditional single-step anticipation layer with a multi-step anticipation

layer.

42

Like Nolfi, Tani, and Blank, we will use an Elman network for anticipation. Our

multi-step anticipation network will predict not only the next abstract representa-

tion, but the next sequence of abstract representations. For example, at timestep t

we generate predictions for timesteps t + 1, t + 2, · · · , t + n, and at timestep t + 1

we generate predictions for t + 2, t + 3, · · · , t + n + 1. An example sequence of

predictions is shown in Figure 4.3.

The complete abstraction and anticipation system is shown in Figure 4.4. The

anticipation network takes as input the representation from the abstraction layer and

the current motor commands and velocities. It provides n predictions as output. The

anticipation network outputs sensor states in the abstract representation formed by

the abstraction network. If it is necessary to reconstruct the real sensor values, the

hidden and output layers of the abstraction network can be used to decompress the

information stored in the abstraction representations.

An n-step prediction network can be trained in batch mode using sensor logs

from tasks performed under human control. The network is trained sequentially

across a sensor log. Initially, the representation and motor commands from the first

timestep are input into the recurrent network, and all the context nodes are set to

zero. Each output prediction is compared to the correct output in the sensor log, and

backpropagation is used to train the network. The hidden representation is copied to

the input layer and the next representation and motor commands are passed through

the network. The predictions are once again compared, and backpropagation is used

to update the network weights. The process continues until the end of the sensor

log is reached. The abstraction training algorithm is shown in Figure 4.5, and

the anticipation training algorithm is shown in Figure 4.6. Both figures show a

43

Se
ns

or
im

ot
or

 S
ta

te

Pr
ed

ic
tio

ns

Context

st

ct

st+1

ct+1

st+2

ct+2

st+n

ct+n

Anticipation

Abstraction
(compression)

Abstraction
(decompression)

Figure 4.4: The proposed system for learning localization. Each rounded square
represents multiple nodes. st is the sensor input at time t, and ct is the motor
commands and velocities at the same time. The input and hidden layers of the ab-
straction network are used to build a compact representation. After the anticipation
networks is evaluated, the hidden and output layers of the abstraction network can
be used to rebuild the full sensor information.

TrainAbstraction(abstraction, s)
for i = 0 ... length(s) - 1

abstraction.propagate(si)
abstraction.backpropagate(si)

Figure 4.5: Pseudo-code for the abstraction training algorithm. s is an array of
sensor readings.

single training iteration, but multiple iterations of training are necessary for both

abstraction and anticipation. Towards the end of a run, the long-term predictions

will not be available in the sensor log. In such a case training proceeds as normal,

but when backpropagation is performed no error is attributed to the outputs that

correspond to predictions past the limits of the sensor log.

The addition of longer term predictions can improve the performance of a network

at short term predictions. If the difference between abstractions at adjacent timestep

changes continuously, then it is possible to predict fairly accurately based on only

44

TrainAnticipation(abstraction, anticipation, s, c)
anticipation.clearHiddenLayer()
for i = 0 ... length(s) - 2

abstraction.propagate(si)
ri = abstraction.getHiddenLayer()
hi = anticipation.getHiddenLayer()
predictions = anticipation.propagate(ri . ci . hi)
targets = new Array()
for j = 1 ... predictions.length()

if i + j < length(s)
abstraction.propagate(si+j)
ri+j = abstraction.getHiddenLayer()
targets .= ri+j . ci+j

anticipation.backpropagate(targets)

Figure 4.6: Pseudo-code for the anticipation training algorithm. Array concatena-
tion is indicated by the ‘.’ operation. s is an array of sensor readings, and c is an
array of motor commands and velocities.

local information. In this case only a shallow representation is necessary. All we

need to remember is how the abstraction is changing, and we can accurately predict

future abstractions. In this case single-step prediction would suffice.

However, if the abstraction usually changes continuously but changes drastically

on rare occasions, a single-step prediction network will learn to predict only the

continuous changes. It is easier to predict the small changes that usually occur

than it is to predict the large changes that occur only rarely. A one-step prediction

network has little incentive to learn how to predict the drastic changes, and will

instead learn to predict the more common changes very well. On the other hand, a

multi-step prediction network has more incentive to learn how to predict the drastic

changes, because they are much more common in long-term predictions. The long-

term predictions will make use of the hidden layer to store information and improve

their performance. After sufficient representation is built on the hidden layer, even

45

the short term predictions can use the hidden representation in order to improve

their accuracy.

This is best demonstrated with an example. We will examine how anticipation

can be used to predict an alternating sequence of 10 zeros and 10 ones. By predicting

that the next value will match the current value, a one-step prediction network could

achieve 90% accuracy. With such high accuracy, it would be difficult for the recurrent

network to learn the transitions from one to zero, even though they are the defining

events in the sequence. In contrast, if we have a 9-step prediction network it will be

much more inclined to learn to predict the transitions. The 5-step prediction can

only achieve 50% accuracy by predicting the current value, so it will be more likely

to develop useful hidden representations. In turn, the representations developed

because of the presence of the 5-step prediction will also be available to the other

8 predictions, and the entire network will learn to predict better than otherwise

possible.

Figures 4.7 and 4.8 show the error reduction during the training of 1-step and

9-step prediction networks for the alternating sequence problem described above.

The networks have a single input, a four node hidden layer, and an output node

for each prediction. The networks are trained with a learning rate of 0.001. In

Figure 4.8 there are 9 lines ranging in color from black to light gray. The black

line represents the prediction error of the 1-step prediction, while the lightest line

represents the 9-step prediction. We see that 1-step and 9-step predictions are

initially made with high accuracy, while the predictions near 5-steps are the least

accurate. As training progresses, the predictions with high error get more accurate.

In turn, once the hidden layer builds adequate representations, the error decreases for

46

PSfrag replacements

0 500 1000 1500 2000 2500 3000 3500 4000
Training Iteration (10 cycles)

0.00

0.05

0.10

0.15

0.20

0.25

Sq
ua

re
d

Pr
ed

ic
tio

n
Er

ro
r

1-step Prediction

Figure 4.7: Squared prediction error during the training of a 1-step prediction net-
work for an alternating sequence of 10 zeros and 10 ones. Averaged over 30 trials.PSfrag replacements

0 500 1000 1500 2000 2500 3000 3500 4000
Training Iteration (10 cycles)

0.00

0.05

0.10

0.15

0.20

0.25

Sq
ua

re
d

Pr
ed

ic
tio

n
Er

ro
r

9-step Prediction
8-step Prediction
7-step Prediction
6-step Prediction
5-step Prediction
4-step Prediction
3-step Prediction
2-step Prediction
1-step Prediction

Figure 4.8: Squared prediction errors during the training of a 9-step prediction
network for an alternating sequence of 10 zeros and 10 ones. Darker lines indicate
shorter term prediction, with the 1-step prediction in black. Averaged over 30 trials.

47

PredictiveControl(robot, abstraction, anticipation, lookahead)
anticipation.clearHiddenLayer()
i = 0
while robot.isRunning()

// read the current state
si = robot.getSensorState()
ci = robot.getMotorCommands()

// make a new set of predictions
abstraction.propagate(si)
ri = abstraction.getHiddenLayer()
hi = anticipation.getHiddenLayer()
pi = anticipation.propagate(ri . ci . hi)

// get the first motor command from the last prediction
commands = getMotorCommands(pi, 1)
for j = 1 ... lookahead

if i− j >= 0
// add motor commands from previous predictions
commands += getMotorCommands(pi−j, j + 1)

// find the average command from all predictions
commands = commands / min(i + 1, lookahead)

// execute current action and set next action
i = robot.advanceTime()
robot.setMotorCommands(commands)

Figure 4.9: Pseudo-code for the predictive control algorithm. Array concatenation
is indicated by the ‘.’ operation.

every prediction. In contrast, the 1-step prediction network is able to do only slightly

better than 90% accuracy. This simple example shows how long-term predictions

can force a recurrent neural network to learn better representations than would

otherwise be possible. The 1-step anticipation network has the same amount of

representational power as the 9-step, but it never manages to learn a solution as

good as the 9-step prediction network.

48

If an anticipation network is trained until the prediction error becomes very low,

it is possible to use the predicted motor commands in place of motor commands

provided by the teacher (see Figure 4.9). At this point the network is capable of

repeating the task it was trained for. This is the goal of the developmental processes

in use here. In contrast, much work in developmental robotics is concerned with

emergent behavior. The end goal of developmental robotics is robots that learn

about themselves and their environments while developing their own goals. That

is clearly not the case here. We are interested only in emergent representations as

they can be used for implicit robot localization.

Abstract Hidden Markov Models (AHMMs) (Bui et al., 2002) are another model

that can be used to predict events at multiple timescales. Osentoski et al. (2004) used

an AHMM to predict what path a person was taking through an environment. As

more of the path was seen, the prediction accuracy increased. AHMMs are primarily

concerned with activity recognition. Although it may be possible to use a AHMM

as a predictive control system, current work is not focused in that direction.

An AHMM can be used to assign probability to an entire set of actions. In

contrast, a neural network is somewhat limited because it can only report a single

output. In stochastic environments this may severely hurt the performance of an

anticipation neural network, while an AHMM can still work very well. In this thesis

we will only examine implicit localization in static environments, and it may be

necessary to use other models to generalize to dynamic environments.

49

4.5 Improving Performance

Nolfi and Tani (1999) developed a robot that could localize itself along the path

it was trained on. The robot continuously followed the wall around a simple room

while predicting what its sensor readings would be in the future. After training, it

was shown that the robot could accurately predict future states. In other words,

the robot had an implicit representation of its current location that allowed it to

predict the future. When the robot was unexpectedly moved, its predictions would

not accurately reflect the future, and the prediction error would be much higher.

The prediction error essentially showed that the robot was confused. However, after

a brief amount of time the prediction error would once again shrink to its previous

level. When the prediction error returned to a small value, the robot had successfully

re-acquired its location in a process similar to global localization.

Prediction error is a very important concept. It tells us how well the robot

understands its environment and its current location. Nolfi and Tani (1999) only

used the prediction error as an indicator of confusion, but we can also use it to

improve performance. If the goal is to perform the task that the network was

trained for, then a high prediction error indicates that for some reason the robot is

not successfully performing the task. Predictions are only good when the prediction

error is low.

We can define prediction error in two ways. We define offline prediction error as

the difference between a prediction and what really happens, and we define online

prediction error as the difference between successive predictions. During training,

50

OfflinePredictionError(i, r, c, p, lookahead)
ei = 0

for j = 1 ... lookahead
if i− j >= 0

rError = ri - getRepresentation(pi−j, j)
rError = sum(rError * rError)
cError = ci - getMotorCommands(pi−j, j)
cError = sum(cError * cError)
ei += (rError + cError) / lookahead

return ei

Figure 4.10: Pseudo-code for offline prediction error computation. i is the timestep,
r is the abstract representation, c is the motor commands and velocities, p is the
predictions, and lookahead gives the lookahead length of the anticipation network.

we attempt to minimize the offline prediction error. This is possible when training

in batch mode because we know exactly what will happen during the rest of the run.

When the prediction error is high, another mechanism is needed in order to get

the robot back on task. Reinforcement learning can be used for this task. The robot

can be rewarded when the prediction error is reasonably low. The robot will learn to

perform the task as closely as possible in order to receive the maximum amount of

reward. Designing a good reward function for reinforcement learning is a non-trivial

process, so automatically generating a reward function is advantageous.

In addition, such a reward function is fully self-contained in the robot. No

external information must be provided. It is common to use global information for

reinforcement signals. For example, goal finding robots often use the distance from

the goal as a penalty or reward (Provost et al., 2006; Smart and Kaelbling, 2002).

When using reinforcement learning in such a way, it is necessary to have a system in

place that can provide the necessary global information to the agent. By using the

51

OnlinePredictionError(i, r, c, p, lookahead)
ei = 0

if i == 0
return ei

rError = ri - getRepresentation(pi−1, 1)
rError = sum(rError * rError)
cError = ci - getMotorCommand(pi−1, 1)
cError = sum(cError * cError)
ei += (rError + cError) / lookahead

for j = 1 ... predictions - 1
rError = getRepresentation(pi, j) - getRepresentation(pi−1, j + 1)
rError = sum(rError * rError)
cError = getMotorCommand(pi, j) - getMotorCommand(pi−1, j + 1)
cError = sum(cError * cError)
ei += (rError + cError) / lookahead

return ei

Figure 4.11: Pseudo-code for online prediction error computation. i is the timestep,
r is the abstract representation, c is the motor commands and velocities, p is the
predictions, and lookahead gives the lookahead length of the anticipation network.

52

prediction error as a reward, we can automatically create a reward function using

only local information and avoid the need for another system.

The idea of using a level of certainty to generate a reward signal is not new. Barto

and Şimşek (2005) rewarded a reinforcement learning agent for untargeted yet novel

behavior. The agent learned about its environment much more quickly because it

received reward for doing new things. Essentially, the agent had an internal curiosity

that encouraged it to more fully interact with its environment. Recently, Şimşek and

Barto (2006) have used the difference between successive approximations of a value

function as a reward signal. When the value function approximation changes, it

indicates that the agent does not understand its interactions with its environment.

By rewarding the agent for visiting states that it does not understand, it is forced

to more fully explore that environment. We are proposing the inverse process here,

where an agent is rewarded for doing things it understands well, but it would also be

possible to use an anticipation network to reward an agent for behavior that caused

high prediction error.

4.6 Application to Localization

The developmental processes of abstraction and anticipation are not specifically

designed for localization, but they can be used for localization. An anticipation

network learns to predict what will happen only in situations that are similar to what

it was trained on. So, the prediction error tells us how well the robot “understands”

what it is currently doing. In turn, we can use the prediction error to get an idea of

the location of the robot.

53

In the previous sections, we discussed using abstraction and anticipation to un-

derstand the sequence of sensorimotor information generated by a robot performing

a specific task. Abstraction and anticipation are task independent, and almost any

task could be chosen. If the chosen task requires a robot to move through a complex

environment, then a successful anticipation system will also exhibit properties of

implicit localization. In order to predict future sensor inputs, the robot must have

an idea of where it currently is. This information is stored in the weights of the

network itself.

While it is not possible to extract the localization component of the system,

it is possible to make use of it. For example, five anticipation networks could be

trained on five different paths through an environment. A person could then drive

the robot through the environment on a similar path while each anticipation network

attempted to predict future states. The prediction error from each of these networks

should then tell us how close the robot is to each of the initial paths. This can also

be examined on a single path. If prediction error is usually high, then the robot is

not on the path, but if prediction error is usually low, then the robot is most likely

on a similar path to the one it drove during training.

If the five paths in Figure 4.12 were used, then it should be possible to use the

prediction errors to determine which path was followed most closely. By knowing

which path was followed, we can also determine which room the robot entered. This

demonstrates coarse-grained localization. However, finer-grained localization should

occur inside each network. The path that leads to Room 5 passes three doorways

before turning into the fourth. An anticipation network trained to predict this path

must recognize when each doorway is passed, but not turn until the fourth doorway

54

Room 1 Room 2

Room 5Room 4Room 3

Start

Figure 4.12: Five paths through an indoor environment.

is seen. Alternatively, the network could learn to take the first doorway on the right

after the first doorway on the left. Either approach is valid, and the anticipation

network can choose to learn whatever is the easiest for it.

The use of multi-step prediction also forces the network to learn more informa-

tion. Instead of only learning when to turn, the network also has to predict turns far

in advance. Therefore, the network not only knows to turn into the third door on the

right, but it also knows when it is going to pass the first and second doors. To accu-

rately predict all this information, it must have an expressive representation of the

task. As the robot drives, it is localizing itself with respect to its own representation.

If a network can be trained to do this, it is performing implicit localization.

The system proposed in this chapter is related to several other systems, but

it has components that make it better for implicit localization than any of the

others. Reinforcement learning with temporally extended actions, or options, is

good for learning how to perform sequences of behavior, but it does not learn how to

recognize them. Similarly, Abstract Hidden Markov Models are good at recognizing

behavior, but have not been used to control a system. When trying to perform

55

implicit localization, we desire both the ability to recognize places we have traveled

before and the ability to use predictive control. Neither options nor AHMMs give us

these capabilities in a single package. It may be possible to combine the two systems,

but the proposed system from this chapter is much simpler. It is also hoped that

it will perform “well enough” to warrant real world applications without needing to

add additional complexity.

56

Chapter 5

Evaluating Implicit Localization

In the previous chapters we have described the machine learning algorithms, the

localization problem, and the foundations of development. In this chapter all three

systems come together into working systems that can perform localization in simu-

lated worlds.

5.1 Path Following

In order to demonstrate localization, it is sufficient to demonstrate adequate perfor-

mance at a task that requires localization. The task we chose is path following. In

order to follow a path, a robot must know where it is and know what action to take.

In simple environments, path following can be done purely reactively. Each sensor

input can be mapped to a corresponding motor command. Such situations are not

of great interest. We will define paths where the input does not uniquely identify

the proper action. In order to traverse such a path, it is necessary for the robot to

implicitly localize itself along the path.

57

It is possible to perform localization without being in control of a robot. However,

we want to demonstrate the usefulness of implicit localization, so we choose a task

that can be used to test both localization and control. Path following is an ideal

task for this reason.

5.2 Grid World

The first environment we explore is a grid world in which each cell is associated

with three random values such that neighboring cells have values near each other.

Such an environment can easily be represented by a bitmap image file in which the

red, green, and blue values for each pixel are attributed to the corresponding cell.

The values of each pixel in the image are chosen randomly, but by applying a blur

to the image nearby pixels are given similar color values. After being smoothed,

the image is adjusted so that all colors are still represented. The color values are

integers ranging from 0 to 255, but are normalized to be continuous values in the

range from 0 to 1.

The robot in this environment can move one cell at a time. The robot is allowed

to move in the four cardinal directions. At each timestep the robot receives the

random values from its current cell as a sensory input. The robot has three sensory

inputs: red, green and blue. Gaussian noise with a standard deviation of 0.05 is

added to each sensor reading. After receiving the sensor readings, the robot must

choose which direction to travel next. The four actions and their representations are

shown in Table 5.1. After an action is selected there is a 95% chance that the robot

will move in the specified direction and a 5% chance that the robot will not move.

58

A

B
C

D E

FG

Figure 5.1: The grid world domain and path. The robot starts at the upper left.

Action Representation

1. Up (1, 0, 0, 0)
2. Down (0, 1, 0, 0)
3. Left (0, 0, 1, 0)
4. Right (0, 0, 0, 1)

Table 5.1: All possible actions in the grid world.

The path that we attempt to teach the robot is shown in Figure 5.1. The path is

150 cells long, but due to missed actions it takes the robot about 158 timesteps on

average to traverse the path. The three sensor values are already independent of one

another, so there is no need for an abstraction network. Instead, we can focus on

anticipation only. Every time the robot drives down this path it will receive slightly

different sensor readings and perform actions at slightly different times. Therefore,

following the path is more difficult than just memorizing a set of actions.

59

5.2.1 Anticipation

When attempting to train an anticipation network, there are several important pa-

rameters to set. The size of an anticipation network’s hidden layer places an upper

bound on the complexity of the model that can be represented. For the grid world

path following task we used networks with 20, 40, and 80 node hidden layers. We

hypothesize that networks with more representational power due to bigger hidden

layers will be better able to complete the task.

The next important parameter is the number of future predictions to make. In

the previous chapter it was shown that a one-step prediction network failed to learn

to predict the transitions in a simple alternating sequence. Making longer term

predictions increases the ability of a network to handle sudden changes. In order

to evaluate the importance of multi-step prediction we attempted to learn to follow

the path using single-step prediction networks and 10-step prediction networks.

The last important parameter is the number of training examples to provide. The

grid world used here is not deterministic, every time the robot traverses the path it

will record slightly different information. The number of unique sensorimotor logs

available for training may greatly affect the ability of the network to generalize. In

our testing we used 1, 10, and 100 sensorimotor logs for training.

In addition to the sensorimotor logs used for training, we held out an extra

10 sensor logs to use for testing. These sensorimotor logs were recorded as the

robot traversed the same path, but were not available for the network to train on.

These logs will be used to determine if a network is overfitting its training data. If

overfitting occurs, prediction error will decrease on the training set while increasing

on the test set. Overfitting is more likely when there are fewer sensor logs in the

60

A

B

H E

FG

I

Figure 5.2: An overlapping path through the grid world. The paths overlap for a
significant portion of the run. The new path is shown in black, the original path is
in white.

training set and when the model used for anticipation is more complex. Therefore,

networks with many hidden neurons that are trained with few examples are likely

to overfit the training data and perform poorly on the test set. Such networks may

not be useful for localization.

Sensor logs were also recorded along two additional paths. The first of these

paths had a long region of overlap with the original path (Figure 5.2), while the

second is entirely different than the original path (Figure 5.3). We expect prediction

error to be significantly lower along the overlapping path, because it is more similar

to the original path. 10 sensor logs are recorded along each path. We will call these

sets of 10 sensor logs the overlapping set and the different set.

Eighteen sets of thirty experiments were carried out with each possible combina-

tion of parameters. All the networks were trained 20,000 times with the anticipation

61

Figure 5.3: A different path through the grid world. Both paths start at the same
location, but are otherwise different. The new path is shown in black, the original
path is in white.

training algorithm presented in Figure 4.6. Entirely new data is generated for each

experiment. When multiple sensor logs were used for training, the sensor log was

cycled in order between calls to the TrainAnticipation algorithm. The learning

rate was set to 0.001, and momentum was set to 0.5. The sensor inputs were used as

an abstract representation, and no abstraction network was used. All nodes in the

network used sigmoidal activation functions. Offline prediction error on the train-

ing set was computed continuously during training. After every 100 iterations of the

TrainAnticipation algorithm, the average offline predication error was calculated

for the test set, the overlapping set, and the different set by using the algorithm in

Figure 4.10.

We hypothesize that the single step prediction networks will accurately predict

the changing sensory information, but will not accurately predict changes in motor

62

commands. The motor commands only change seven times during the training run,

so it is unlikely that a one step prediction network would learn to predict them.

On the contrary, it is hoped that the 10-step prediction networks will be able to

better predict the changes. The 10-step prediction network must predict changing

motor commands much more often, and should learn to predict them much more

accurately.

Figures 5.4, 5.5, and 5.6 show the error reduction during training of the 1-step

prediction networks. Figures 5.7, 5.8, and 5.9 show the error reduction during train-

ing of the 10-step prediction networks.

The one-step prediction networks (Figures 5.4, 5.5, and 5.6) all had similar train-

ing results. Prediction error decreased very quickly on all five sets of data. Over

time the overlapping and different sets began to receive more error. There was little

overfitting here. The networks trained with 1 training example and an 80 node hid-

den layer had the highest amount of overfitting, but on average the prediction error

was still decreasing on the test set even at the end of the experiments.

The results from the 10-step prediction networks (Figures 5.7, 5.8, and 5.9)

are different than the 1-step prediction networks in several important ways. First,

while the prediction error on the overlapping and different sets was low when 1-step

prediction was used, it is much higher when 10-step prediction is used. Second,

learning occurs at a slower rate than when training a one-step prediction network.

Finally, we see that overfitting is much more of a problem when only a single training

example is used. There is still very little overfitting when 10 or 100 training examples

are provided.

63

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(a) 1 training example

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(b) 10 training examples

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(c) 100 training examples

Figure 5.4: Training 1-step prediction networks with 20 hidden nodes and 1, 10, or
100 training examples. Results averaged over 30 experiments.

64

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(a) 1 training example

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(b) 10 training examples

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(c) 100 training examples

Figure 5.5: Training 1-step prediction networks with 40 hidden nodes and 1, 10, or
100 training examples. Results averaged over 30 experiments.

65

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(a) 1 training example

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(b) 10 training examples

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(c) 100 training examples

Figure 5.6: Training 1-step prediction networks with 80 hidden nodes and 1, 10, or
100 training examples. Results averaged over 30 experiments.

66

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(a) 1 training example

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(b) 10 training examples

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(c) 100 training examples

Figure 5.7: Training 10-step prediction networks with 20 hidden nodes and 1, 10, or
100 training examples. Results averaged over 30 experiments.

67

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(a) 1 training example

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(b) 10 training examples

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(c) 100 training examples

Figure 5.8: Training 10-step prediction networks with 40 hidden nodes and 1, 10, or
100 training examples. Results averaged over 30 experiments.

68

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(a) 1 training example

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(b) 10 training examples

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Training
Test
Overlapping
Different

(c) 100 training examples

Figure 5.9: Training 10-step prediction networks with 80 hidden nodes and 1, 10, or
100 training examples. Results averaged over 30 experiments.

69

We hypothesized that the 1-step prediction networks would be good at predict-

ing changes in sensor values, but bad at predicting changes in motor commands.

This can be verified by looking at the prediction error per timestep from a trained

anticipation network as the robot drives down the training path. Figure 5.10 shows

the offline prediction errors per timestep for 1-step and 10-step prediction networks.

Figure 5.10(b) shows the 1-step offline prediction error from the 10-step predic-

tion network. When we talk about the prediction error from an n-step prediction

network we are discussing the n-step prediction unless otherwise noted. We show

the 1-step offline prediction error here only because it makes a direct comparison

between 1-step and 10-step prediction networks possible.

Figure 5.10(c) is rendered in gray scale. The total height of a bar indicates the

offline prediction error at a timestep. In this case, the offline prediction error is

an average of 10 separate prediction errors, and the color of the bar indicates how

much error each prediction is contributing. Black indicates error contributed by

short-term predictions, while light gray indicates error from long-term predictions.

These figures are taken from a single experiment, but they are highly typical of 1

and 10-step prediction networks.

In Figure 5.10 we see that there are spikes in error from both prediction networks

when the robot begins moving in a different direction. The spikes from the one-step

prediction network reach nearly to 2, but the spikes from the 10-step prediction

network reach only to 1. If the robot was travelling left (motor command: 0, 0, 1,

0) and turns upward (motor command: 1, 0, 0, 0), then the offline prediction error

tells approximately how well the robot predicted the change. If the change was not

predicted at all, the error will be the sum-squared difference between the commands.

70

PSfrag replacements

A B C D E F G

0 20 40 60 80 100 120 140 160
Timestep

0.0

0.5

1.0

1.5

2.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(a) 1-step predictionPSfrag replacements

A B C D E F G

0 20 40 60 80 100 120 140 160
Timestep

0.0

0.5

1.0

1.5

2.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(b) 1-step prediction from 10-step networkPSfrag replacements

A B C D E F G

0 20 40 60 80 100 120 140 160
Timestep

0.0

0.5

1.0

1.5

2.0

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(c) 10-step prediction

Figure 5.10: Offline prediction error from a 40-hidden node network trained with 10
training examples. Labeled timesteps correspond to events in Figures 5.1 and 5.2.

71

In this case the prediction error would be 2. If the robot was not sure which direction

it should go (motor command: 0.5, 0, 0.5, 0), then the prediction error would be

0.5. Although the 10-step prediction network did not perfectly predict the motor

command changes, it did see them coming.

The inability of the 1-step prediction networks to predict changing motor com-

mands also explains why error was low on the overlapping and different paths

through the grid world. Since the network primarily predicted that the current mo-

tor command should be maintained, prediction error is low on all grid world paths

that have few turns and many long straight segments. 1-step prediction networks

encoded little path specific information. In contrast 10-step prediction networks

learned the defining characteristic of the path: the turns.

It is also worth noting that the 1-step predictions from the 10-step prediction

network (Figure 5.10(b)) are more accurate than the predictions from the 1-step

prediction network (Figure 5.10(a)). As we had hoped, the presence of long term

predictions led to better short term predictions.

This section has shown that an anticipation network can be trained to predict fu-

ture sensorimotor states. While the one-step prediction networks sometimes entirely

missed the transitions between motor commands, the 10-step prediction networks

achieved a reasonable ability to predict both motor commands and sensor readings.

5.2.2 Localization along a Path

In the previous section we measured performance based on the offline prediction error

(Figure 4.10), but in this section we use the online prediction error (Figure 4.11).

72

Online prediction error is the error between successive approximations. It takes into

account the most recent information instead of relying on predictions made long ago.

All tests in this section use one of the 10-step 40-hidden node prediction networks

trained in the previous section with 10 training examples. The network was chosen

at random. All other 10-step prediction networks should have similar properties to

the one tested here.

First, we record the online prediction errors during one traversal of the orig-

inal path (Figure 5.1), the overlapping path (Figure 5.2), and the different path

(Figure 5.3). The results are shown in Figure 5.11.

The fact that the online prediction error remains low when the robot drives down

the original path indicates that the network has learned path-specific information.

The robot does not know anything about other paths, so the online prediction error

is significantly higher on the other paths in Figure 5.11. On the original path, the

highest error is around 0.1. On the different path the error nearly reaches 1.0. Error

is lower on the overlapping path, but error spikes when the robot leaves the known

path. If nothing else, such a system could be used to determine when a robot leaves

a known path.

In order to determine the extent of the localization occurring in the system, we

can visualize selected hidden layer activations. Figures 5.12, 5.13, and 5.14 show the

activations of three hidden nodes as the robot traverses six different paths.

In Figure 5.12 we see that the 17th hidden node always activates and deactivates

in approximately the same places. Particularly, the node always activates about the

same distance before the last turn. As shown in Figures 5.13 and 5.14, nodes 22

and 28 have even more specific activation patterns. Both of them activate for only a

73

PSfrag replacements

A B C D E F G

0 20 40 60 80 100 120 140 160
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(a) Original path

PSfrag replacements

A B H E F G I

0 20 40 60 80 100 120 140 160 180
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(b) Overlapping path

PSfrag replacements

0 20 40 60 80 100 120 140 160
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(c) Different path

Figure 5.11: Online prediction errors from a 10-step 40-hidden node prediction net-
work as the robot drives down the original path, the overlapping path, and the
different path. Labeled timesteps in Figure 5.11(b) correspond to events in Fig-
ure 5.2.

74

Figure 5.12: Activation of the 17th hidden node in a 10-step 40-hidden node pre-
diction network as the robot drives down six paths through the environment. The
original path is at the top-left, and the path from Figure 5.2 is at the top right. The
node activates early in the run and again in the last quarter of the run.

75

Figure 5.13: Activation of the 22nd hidden node in a 10-step 40-hidden node pre-
diction network as the robot drives down six paths through the environment. The
node usually activates at the position labeled D in Figure 5.1.

76

Figure 5.14: Activation of the 28th hidden node in a 10-step 40-hidden node pre-
diction network as the robot drives down six paths through the environment. The
node usually activates at the position labeled E in Figure 5.1.

77

single corner. The three hidden nodes activations shown here had the most obvious

patterns. It is likely that other positions on the path could be described by linear

combinations of hidden node activations. The presence of neurons that only activate

at certain positions shows that the network is able to localize itself along the trained

path.

78

5.2.3 Control from Prediction

In the previous section the robot demonstrated that it could maintain a concept

of its current location as it moved along a path. Knowing where you are is not

extremely useful if the information can not also be used for online robot control. In

this set of experiments we attempt to use the learned networks to control the robot.

We use the predictive control algorithm from Figure 4.9. The predictive control

algorithm uses a variable number of predictions depending on the value given for

the look ahead length, here we will use only the last prediction. In order to set the

motor command of the robot, we select the action from Table 5.1 that matches the

predicted command as closely as possible.

While the networks were being trained in Section 5.2.1, we also measured the

robustness of predictive control. After every 100 training iterations of each prediction

network, we attempted to control the robot with the predictive control algorithm.

Given 100 predictive control attempts, we measured the average distance traveled

along the path and counted the number of successful completions of the path. As

long as a robot stayed within one grid cell of the true path it was allowed to continue.

Figure 5.15 shows the performance of the 1-step prediction networks. The 80

hidden node network performs the best, but it only makes it about one fourth of

the way down the path. No attempts at predictive control with a 1-step prediction

network reached the end of the path. The inability of 1-step prediction networks

to predict changes in motor commands makes them poorly suited for this task.

Figure 5.16 shows the average distance traveled under predictive control and the

percentage of attempts that followed the path all the way to the end.

79

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0

20

40

60

80

100

120

140

160

Av
er

ag
e

D
is

ta
nc

e

1 examples
10 examples
100 examples

(a) 20 hidden nodes

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0

20

40

60

80

100

120

140

160

Av
er

ag
e

D
is

ta
nc

e

1 examples
10 examples
100 examples

(b) 40 hidden nodes

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0

20

40

60

80

100

120

140

160

Av
er

ag
e

D
is

ta
nc

e

1 examples
10 examples
100 examples

(c) 80 hidden nodes

Figure 5.15: Average distance robot travels before falling off the path when being
controlled with the predictive control algorithm and a 1-step prediction network.
Results averaged over 30 experiments.

80

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0

20

40

60

80

100

120

140

160

Av
er

ag
e

D
is

ta
nc

e

1 examples
10 examples
100 examples

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0

20

40

60

80

100

Pe
rc

en
tC

om
pl

et
ed

1 examples
10 examples
100 examples

(a) 20 hidden nodes

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0

20

40

60

80

100

120

140

160

Av
er

ag
e

D
is

ta
nc

e

1 examples
10 examples
100 examples

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0

20

40

60

80

100

Pe
rc

en
tC

om
pl

et
ed

1 examples
10 examples
100 examples

(b) 40 hidden nodes

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0

20

40

60

80

100

120

140

160

Av
er

ag
e

D
is

ta
nc

e

1 examples
10 examples
100 examples

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0

20

40

60

80

100

Pe
rc

en
tC

om
pl

et
ed

1 examples
10 examples
100 examples

(c) 80 hidden nodes

Figure 5.16: Performance under predictive control with a 10-step prediction network.
Left: Average distance robot travels before falling off the path. Right: Percentage
of attempts completed. Results averaged over 30 experiments.

81

For each number of training examples, the 10-step 80-hidden node prediction

networks achieved the best performance. With 100 examples, the network could

achieve over 75% accuracy. Accuracy fell off as the number of training examples was

reduced, but the change from 100 training examples to 10 training examples did not

have a large effect. It is likely that using more than 100 training examples would

have little effect on performance.

The most interesting aspect of these results is the performance of multi-step

prediction networks trained with only a single training example. Given the amount

of overfitting shown in Figures 5.7, 5.8, and 5.9, it would seem that a network trained

with only a single training example would be of little value. However, we have shown

that such a network is more successful at following the path than any of the 1-step

prediction networks. The 1-step prediction networks had substantially lower offline

prediction errors on the test set, yet none of them were able to complete the path.

In this section we have seen the power of predictive control. Starting from a single

training example, it was possible to duplicate the behavior. In the next section we

will apply reinforcement learning to attempt to learn more robust control policies.

5.2.4 Reinforcement Learning

In this section we demonstrate an alternate use for the anticipation network we have

learned. An anticipation network generates a continuous stream of predictions. As

we have seen in the previous section, when we are on the right path the prediction

error will be low, and when we are not on the right path it will be high. The pre-

diction error can therefore be used as a form of constant feedback. Using predictive

82

control we could only follow the path 75% of the time. It is hoped that RL can be

used to create more robust policies.

Our reinforcement learning system uses prediction error as feedback in order to

learn how to follow the path. In the grid world task, we can use the current sensori-

motor state and the hidden layer of the prediction network as a state representation.

The possible actions are left, right, up, and down. The only remaining choice is the

reward structure.

Recurrent networks can behave unpredictably, so we do not want to directly

estimate the prediction error from the network. Instead, we will apply a threshold.

When the online prediction error is below 0.05, we will give a reward of one. When

the online prediction error is above 0.2, we will give a penalty of one and terminate

the episode. When the error is between 0.05 and 0.2, no reward or penalty will be

given. These values were chosen such that if the path is followed perfectly, reward will

be received on nearly every timestep. Refer to Figure 5.11 for the online prediction

errors along the path.

Q-Learning (see Section 2.2.2) was used to learn a control policy. Ideally, this

policy should follow the training path. The learning rate was set to 0.01 and the

discount rate was set to 0.9. These are reasonable parameter values for Q-Learning.

The discount rate is somewhat low, but this is acceptable because rewards are re-

ceived constantly during each episode. We do not need to look ahead a long time

to determine if an action is good. A neural network with a 30 node hidden layer

was used to approximate the action-value function, and momentum of 0.5 was used

throughout training.

83

In order to encourage exploration at the proper times, the probability of taking

a random action, ε, was varied. As training progressed, a counter was kept that

indicated the farthest any episode had successfully followed the path. If we were

at the start of an episode, ε was set to a low value in order to capitalize on the

knowledge already acquired. As we approached the longest recorded episode length,

ε was adjusted higher in order to encourage exploration of the less well known parts

of the path. The total range of ε was from 0.0001 to 0.2, but intermediate values

were used most often. This was necessary because the reward structure was set up

so that the episode would usually end when the robot fell off the path. If ε is too

high, the robot is never able to make it far into the episode because random actions

knock it off the path and end the episode.

The robot is given 180 timesteps to complete the path, which is more than enough

time. No reward is given at the end of the path, because we want to learn with only

internal information. Also, the episode is not ended when the robot leaves or reaches

the end of the path.

Tests were conducted on each 10-step prediction network trained in Section 5.2.1.

Each agent was trained for 10,000 episodes. After 10,000 episodes, ε was set to zero

and the agent was allowed to run for another 5,000 episodes in order to evaluate

performance of the greedy policy. The results are presented in Figure 5.17. The left

side of Figure 5.17 shows the average distance traveled in each epoch, and the right

side shows the percentage of attempts that stayed within one grid cell of the path

all the way to the end. Training was not attempted with 1-step prediction networks.

Note that the distances in Figure 5.17 are the average distance travelled and not

the average distance along the path. It is possible that an agent could stay alive

84

and receive reward without following the intended path. Therefore, the completion

percentages gives a better indication of the real performance of the system.

When training was completed, the agents reached performance similar to the

predictive control algorithm in some cases. The agents based on the 80-hidden node

prediction network performed comparably, but the performance of the agents using

the 20-hidden node networks was substantially worse than under predictive control.

While this is not the result we had hoped for, it demonstrates that it is possible to

extract useful information from a multi-step prediction network.

We have shown that an anticipation network can be used to generate a reward

signal for reinforcement learning. It is hoped that with more advanced RL algorithms

performance could be substantially increased.

85

PSfrag replacements

0 20 40 60 80 100 120 140 160
Training Epoch (100 iterations)

0

20

40

60

80

100

120

140

160

Av
er

ag
e

D
is

ta
nc

e

1 examples
10 examples
100 examples

PSfrag replacements

0 20 40 60 80 100 120 140 160
Training Epoch (100 iterations)

0

20

40

60

80

100

Pe
rc

en
tC

om
pl

et
ed

1 examples
10 examples
100 examples

(a) 20 hidden nodesPSfrag replacements

0 20 40 60 80 100 120 140 160
Training Epoch (100 iterations)

0

20

40

60

80

100

120

140

160

Av
er

ag
e

D
is

ta
nc

e

1 examples
10 examples
100 examples

PSfrag replacements

0 20 40 60 80 100 120 140 160
Training Epoch (100 iterations)

0

20

40

60

80

100

Pe
rc

en
tC

om
pl

et
ed

1 examples
10 examples
100 examples

(b) 40 hidden nodesPSfrag replacements

0 20 40 60 80 100 120 140 160
Training Epoch (100 iterations)

0

20

40

60

80

100

120

140

160

Av
er

ag
e

D
is

ta
nc

e

1 examples
10 examples
100 examples

PSfrag replacements

0 20 40 60 80 100 120 140 160
Training Epoch (100 iterations)

0

20

40

60

80

100

Pe
rc

en
tC

om
pl

et
ed

1 examples
10 examples
100 examples

(c) 80 hidden nodes

Figure 5.17: Performance of Q-Learning agents based on 10-step prediction net-
works. Left: Average distance robot travels during an episode. Right: Percentage
of attempts completed. At epoch 100 ε is set to zero. Results averaged over 30
experiments.

86

Figure 5.18: The simulated robot domain and the path for the robot to follow. The
robot starts at the upper left. Each grid square is one meter long.

5.3 Simulated Robot

The grid world used in the previous section had one important feature common

to real sensor data: sensor readings are not independent events. It is possible to

accurately predict sensor readings by looking back at past readings and building a

model of the environment. This property allows most of the what was done in the

grid world to be transferred to a more realistic environment without change. The

tests in this section are not as thorough as the grid world tests, but they will verify

that our approach works in a realistic environment.

To simulate a realistic environment for a robot, we used the Stage simulator

(Gerkey et al., 2003). The packaged “hospital” environment was used. This envi-

ronment is based on the US Army hospital on the grounds of Fort Sam Houston in

San Antonio, Texas. This combination of simulator and environment has been used

extensively in robotics research, and is characterized by smooth code transition to

87

Action Representation

1. Stop (1, 0, 0, 0, 0, 0)
2. Move Forward (0, 1, 0, 0, 0, 0)
3. Turn Left (0, 0, 1, 0, 0, 0)
4. Turn Right (0, 0, 0, 1, 0, 0)
5. Forward Left (0, 0, 0, 0, 1, 0)
6. Forward Right (0, 0, 0, 0, 0, 1)

Table 5.2: All possible actions in the simulated hospital.

real robots. A screenshot of the simulator and path is shown in Figure 5.18. The

path is about 20 meters long, and it takes the robot about 47 seconds to finish the

path.

We use a Pioneer2AT like robot with a ring of 16 sonar sensors. No other

sensors are used. The 16 sonar sensors can detect obstacles up to 5 meters away.

This configuration should be adequate for implicit localization. The Pioneer2AT

is controlled by specifying a straight-line velocity and a rotational velocity. The

motor state consists of these two values plus 6 other values that specify the current

command the robot is executing. Possible commands are listed in Table 5.2. On the

training path, the robot never used the stop command or turned without driving

forward. Commands are sent every 100ms.

In the grid world we used a variable number of training examples, but in the

simulated hospital we will only use one. While it was straight-forward to collect

multiple training examples in the grid world, it is more difficult in Stage. A person

could drive the path multiple times, or we could use an algorithm to retrace a path

exactly. If we choose the first option the paths driven by a person may differ too

much and make learning difficult. If we use an existing algorithm to follow the path,

88

then it is unclear that we are gaining anything by teaching another system to do a

task that was already possible. Neither of these situations are ideal.

We demonstrated that is possible to learn to repeat a task based on only a single

example (see Figure 5.17). The controller trained with only one training example

had a much lower completion percentage than the others. However, it did manage to

reach the end of the path on a sizeable percentage of the attempts. We hypothesize

that we will be able to achieve similar performance in the simulated hospital.

5.3.1 Abstraction

Unlike the grid world example, the sensor data from the Stage simulator can benefit

from abstraction. Because of the sonar configuration and environment structure,

certain combinations of sonar readings are likely, while others are unlikely or impos-

sible. Using abstraction will eliminate the need for the anticipation layer to interpret

individuals readings, and will simplify the anticipation network structurally by re-

quiring fewer neurons for the more compact representation.

The abstraction network is trained to compress 16 sonar readings into an abstract

representation of 8 values. The network has 16 inputs, 16 outputs, and an 8 node

hidden layer. The hidden layer uses a sigmoid activation function while the output

layer uses a linear activation function. The network is trained for 10,000 passes

through the sonar data from the single training example. The learning rate is set to

0.0001 and momentum of 0.5 is used. The result of training is shown in Figure 5.19.

89

PSfrag replacements

0 20 40 60 80 100
Training Epoch (100 iterations)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
m

-S
qu

ar
ed

Er
ro

r

Figure 5.19: Sum-squared error during training of an sonar abstraction network.
The network takes 16 sonar values, and compresses the information into 8 continuous
values.

5.3.2 Anticipation

The anticipation layer is very similar to that used in the grid world. The input into

the anticipation layer has 8 values for the abstract sonar representation, 2 values for

the motor velocities, and 6 values for the actions. Therefore the network needs 16

inputs and 16 outputs for each prediction.

Although 1-step prediction was not adequate for the grid world, and we do not

expect it to be here, examining what can be learned by a 1-step prediction network

with more realistic data gives us a better picture of the limits of such a network.

In order to force the network to learn the transitions, we will also use an 80-step

prediction network. A 10-step prediction, as was used for the grid world, would

only predict outputs for the next second. However, we are attempting to predict

a longer sequence here so we increase the prediction length to compensate. When

90

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.1

0.2

0.3

0.4

0.5

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

20 hidden nodes
40 hidden nodes
80 hidden nodes

Figure 5.20: Offline prediction error during the training of a 1-step prediction net-
work. The solid lines each represent one trial, while the dotted lines are the average
result from 10 experiments.

performing 80-step prediction, there are 16 outputs for each prediction and the

combined network has 1280 outputs.

The experimental setup was the same as in the grid world. The learning rate

was set to 0.001, the momentum was set to 0.5, and all nodes in the network used

sigmoidal activation functions. Once again, anticipation networks with 20, 40, and

80 hidden nodes are evaluated. Figures 5.20 and 5.21 show the training progress

for the prediction networks. Figures 5.22 and 5.23 show the offline prediction errors

after training is completed.

While the offline prediction error is usually low, it jumps very high when the

robot changes actions. In the one-step prediction networks this indicates a fatal

flaw; they are incapable of predicting when actions change. However, when using an

80-step prediction network the width of the spikes is also important. When the spikes

91

PSfrag replacements

0 50 100 150 200
Training Epoch (100 iterations)

0.0

0.1

0.2

0.3

0.4

0.5

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

20 hidden nodes
40 hidden nodes
80 hidden nodes

Figure 5.21: Offline prediction error during the training of a 80-step prediction
network. The solid lines each represent one trial, while the dotted lines are the
average result from 10 experiments.

are wide, as in Figure 5.23(a) at timestep 125 or Figure 5.23(b) at timestep 250, it

means that long term predictions are slow to pick up the change. The 80-step 80-

hidden node network has no wide spikes. In this case, all motor command changes

are predicted, but some will be predicted up to a second after they should have

been. While this will degrade performance, it should still be possible to complete

some runs.

Given the large number of outputs, it is somewhat surprising that the 80-step

prediction networks are able to learn to output accurate predictions with only 20, 40,

or 80 hidden nodes. The 80-step 80-hidden node prediction network outperformed

the 20 and 40 hidden layer networks. The 80-step 80-hidden node network will be

used for the remainder of this section.

92

PSfrag replacements

0 100 200 300 400 500
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(a) 20 hidden nodes

PSfrag replacements

0 100 200 300 400 500
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(b) 40 hidden nodes

PSfrag replacements

0 100 200 300 400 500
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(c) 80 hidden nodes

Figure 5.22: Offline prediction errors from 1-step prediction networks as the robot
follows the path.

93

PSfrag replacements

0 100 200 300 400 500
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(a) 20 hidden nodes

PSfrag replacements

0 100 200 300 400 500
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(b) 40 hidden nodes

PSfrag replacements

0 100 200 300 400 500
Timestep

0.0

0.5

1.0

1.5

2.0

2.5

O
ffl

in
e

Pr
ed

ic
tio

n
Er

ro
r

(c) 80 hidden nodes

Figure 5.23: Offline prediction errors from 80-step prediction networks as the robot
follows the path.

94

PSfrag replacements

0 100 200 300 400 500
Timestep

0.00

0.05

0.10

0.15

0.20

0.25

O
nl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Figure 5.24: The online prediction error from the 80-step 80-hidden node prediction
network as the robot follows the path.

5.3.3 Localization along a Path

When examining the grid world results, we attempted to determine if the prediction

network was capable of global localization. With such an abstract problem domain,

it was difficult to determine exactly what was happening. Using a simulated robot

with sonar sensors puts us in a much more comfortable place to answer this question.

Figure 5.24 shows the online prediction error on the path that the robot was

trained on. As expected the error stays extremely low. There are several spikes

in the online prediction error, but all errors are low enough that the network can

accurately predict the future as long as it stays on the path.

Figure 5.26 shows the online prediction error on as the robot drives down the

completely new path shown in Figure 5.25. Figure 5.28 shows the error on the path

in Figure 5.27. Because the path in Figure 5.27 overlaps with the initial training

path we expect it to have a much lower error than the completely new path. Both

95

Figure 5.25: A different path for the simulated robot. The original path is shown in
a lighter color than the new path.

the original and overlapping paths were driven by a person, so the correspondence

between them is far from exact. Still, the online prediction error on the overlapping

path is noticeably lower than the error on the different path. The total error on the

overlapping path is 19.88, while the total error on the new path is 36.20.

These graphs demonstrate that an anticipation network is able to make a distinc-

tion between familiar and unfamiliar states in a realistic navigation problem, even

when the paths do not completely overlap. This shows the power of the network

to perform implicit localization. The robot is capable of recognizing sequences of

states it has seen before and using that information to accurately predict what will

come next.

96

PSfrag replacements

0 50 100 150 200 250 300 350 400 450
Timestep

0.00

0.05

0.10

0.15

0.20

0.25

O
nl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Figure 5.26: Online prediction errors from the 80 node hidden layer, 80-step predic-
tion network as the robot drives down the path in Figure 5.25.

Figure 5.27: A similar path for the simulated robot. The original path is shown in
a lighter color than the new path.

97

PSfrag replacements

0 100 200 300 400 500 600
Timestep

0.00

0.05

0.10

0.15

0.20

0.25

O
nl

in
e

Pr
ed

ic
tio

n
Er

ro
r

Figure 5.28: Online prediction errors from the 80 node hidden layer, 80-step predic-
tion network as the robot drives down the path in Figure 5.27.

5.3.4 Control from Prediction

It has been shown that prediction networks are capable of recognizing parts of the

paths that are similar to the initial training data. In a very loose sense, some form

of localization must be occurring, but it is much more impressive if we can see a

robot intelligently control itself. In this section we will examine robot control based

on predictions.

It is worth noting a difference between memorization and understanding. Mem-

orization is not an intelligent process, it does not require any knowledge about the

information it holds. Understanding, on the other hand, demonstrates knowledge of

the data. If the prediction network is merely memorizing a sequence of motor com-

mands, it is not doing anything that could not be done easily with a sensorimotor

log stored in a flat file.

98

Figure 5.29: Attempting to repeat a path by exactly duplicating the motor com-
mands used on the original path. The initial position for each trial is randomly
offset from the initial start position. The robot is rotated ±4 degrees, is moved up
to 2 meters forward or 0.5 meters back, and is offset laterally by up to 0.1 meters.
Numbers on the image mark the general area where the robot collided with walls.

Figure 5.29 demonstrates the results of memorizing motor commands on 30 at-

tempts to follow the path. In each attempt the original motor commands are re-

peated, regardless of sensor input. This strategy would work in a completely deter-

ministic environment. However, if the environment is not deterministic, then playing

back recorded motor commands will not be able to accomplish the original task. In

order to demonstrate this, the starting position is randomly changed. When the

starting position is moved sufficiently, the robot will drive straight into walls.

Figure 5.30 shows the robot controlling its motors using the 80-step 80-hidden

node anticipation network developed previously and the predictive control algorithm

(see Figure 4.9) with a lookahead length of 80. In order to set the motor command of

the robot, we select the action from Table 5.1 that matches the predicted command

99

Figure 5.30: Attempting to repeat a path by using the predictions from an anticipa-
tion network. The starting positions are distributed as in Figure 5.29. Numbers on
the image mark the general area where the robot collided with walls and how many
times such collisions occurred.

as closely as possible. The same starting positions were used for Figure 5.29 and

Figure 5.30.

The robot follows a much more recognizable path in Figure 5.30. After the first

corner the robot following the memorized path was significantly misaligned with the

training run. In contrast, the robot taking its movements from the predictive control

algorithm was much better aligned. The prediction network was capable of choosing

when to turn such that the robot would be aligned with the correct path.

Both strategies made it to the destination approximately the same number of

times. The prediction network sometimes got badly confused at the corners, while

the memorized motor commands led the first robot straight into walls. However,

100

when it did not get confused, the prediction network did a very good job of keep-

ing the robot on the right path, even on trials in which the starting position was

significantly offset.

5.3.5 Reinforcement Learning

Reinforcement learning is used in the Stage simulator in a similar way to how it was

used in the grid world (see Section 5.2.4). However, an important difference is that

the robot is not always started at the same position. Instead, the robot’s starting

position is varied as in Figure 5.29. In the grid world the robot could learn to follow

the exact path. With a random starting distribution in Stage, it is now impossible

for the robot to follow exactly the same path every time. Instead, the robot will

have to learn a new path that is similar, but not completely the same as the original.

In the previous section we showed that a robot traversing a similar path had

smaller online prediction errors than a robot traversing a completely different path.

We will use RL to reward the agent for finding similar paths. In the grid world,

we gave harsh penalties for even small errors. Here we will have to take a different

approach, and give rewards even when errors are significantly higher than would be

seen when following the original path. While we set the discount rate to a low value

(0.75) in the grid world, we will need a significantly higher discount rate here. The

actions that maximize immediate reward may not be the best actions to take in the

long term.

We will give the agent a reward whenever the online prediction error is less than

0.1875. When the error is greater than 0.1875 the episode will be terminated. This

value is high enough that the path in Figure 5.27 would be allowed, but if the

101

PSfrag replacements

0 50 100 150 200
Training Epoch (100 episodes)

0

50

100

150

200

250

Li
fe

tim
e

an
d

Re
w

ar
d

Lifetimes
Average Lifetime
Average Reward

Figure 5.31: Using reinforcement learning to learn simulated robot control. Results
of 10 runs of the Q-Learning algorithm.

agent tried to take the path in Figure 5.25 the episode would be terminated. When

the online prediction error is less than 0.03, we will give the agent a reward of 1,

otherwise the reward is always 0.1. An agent can only get the higher reward if it

follows the original path very closely.

The discount rate was set to 0.96 and ε was set to 0.01. The learning rate was

held constant at 0.01. Training ran for 20,000 episodes, and the results are shown

in Figure 5.31. On average, the robot learned to follow the path for around 200

timesteps. The robot following the learned policy is shown in Figure 5.32.

The Q-Learning system displayed some of the same problems that the predictive

control system had. Most notably, both systems often got lost at the first corner

and went straight instead of turning. Out of 30 trials, the agent missed the first

corner 12 times. In comparison the predictive control algorithm only did this nine

times, and the memorized motor commands missed the turn 16 times.

102

Figure 5.32: Q-Learning controller attempting to drive the robot down the path
after being trained for 20,000 episodes. The greedy policy is followed, and episodes
are not terminated when the online prediction error exceeds the limit set for training.
The starting positions are distributed as in Figure 5.29. Numbers on the image mark
the general area where the robot collided with walls.

103

Chapter 6

Discussion

While the path following tasks in Chapter 5 did not achieve something that was not

possible before, they did it in a significant new way. The combination of anticipation

and abstraction was able to build useful representations in two different domains with

few changes to the system. The achievements and contributions of this thesis will

be discussed in this chapter.

6.1 Achievements

Using only an abstraction and anticipation network, a simulated robot successfully

followed an approximately 20 meter long path. This is not yet a general localization

system, but many of the important components are in place.

Figures 5.26 and 5.28 show that the prediction error gives a measure of how close

a robot is to an original path. The simulated robot has much lower prediction error

as it drives down a path similar to the path it was trained on. Given this, it should

be possible to use abstraction and anticipation networks to address the problem

posed in Section 4.6.

104

Even when exactly retracing a path, the prediction error sometimes spikes. In the

case of the simulated robot, these spikes did not adversely affect its ability to follow

the path. By using the predicted motor commands, the robot was able to follow

the path very closely when starting from the same starting position. The prediction

error was sometimes high enough that it would start a turn a few timesteps before

or after the turn started in the training run, but the difference was minimal.

When starting from positions farther from the starting position, as in Figure 5.30,

the robot is able to successfully navigate the path on many of the runs. At some

points the robot became confused, and turned in ways which it never had during

training. This is to be expected. The robot was only trained on a single run, and it

therefore had no ability to learn how to react to going off course. One bad decision

could effectively end a run.

We proposed using reinforcement learning to learn more robust control policies.

We were able to show that prediction error can be used to generate a reward signal

(see Figures 5.17 and 5.31), but the systems failed to take advantage of the infor-

mation already stored in the prediction networks. As a result, it took very long to

learn, and we failed to create robust control policies. Ideally, we would like to be able

to learn a general procedure to follow when prediction error gets too high. People

learn how to get back on track after becoming lost, and we would like our robots to

do the same. This is a difficult problem, and attempting to solve it is beyond the

scope of this thesis.

Another potential use of prediction error becomes apparent here. When pre-

diction error is low, we expect predicted commands to be approximately correct.

When prediction error is high, we should not have the same expectations. In such

105

situations it would be possible to take an action to reduce confusion. If nothing

else, the robot could stop moving and notify a person of the problem. The spikes

in prediction error may make it difficult to know when notification is necessary, but

the idea has merit.

From what we have learned, it is possible to propose more interesting usage

scenarios that just path following. For example, if we had sensor logs of the robot

driving all possible paths from room to room in the simulated environment, an

anticipation network could be trained for each of these paths. Then, as a person

drove the robot through the environment, the prediction error would tell us how

close we were to each path. When the prediction error for a path was sufficiently

low, the robot could alert the driver that it thinks he is driving from Room 1 to

Room 2. However, there may be overlapping paths, and the prediction error from

multiple networks might be low. In this case the robot could present the driver with

a list of possibilities. In this way, anticipation networks could be used for activity

recognition.

While it is interesting to be able to find out what a driver is doing, ultimately

it does not help us much. However, after the driver confirms that he is in fact on

a path the robot has proposed, we can actually turn over control from the driver

to the robot. Provided that robust control policies could be learned, such a system

could be extremely useful on a teleoperated robot.

106

6.2 Contributions

The results presented in the previous section are interesting to two different groups

of researchers. The first group, developmental robotics researchers, is composed of

people concerned with using developmental processes on robots. The second group,

researchers attempting to learn navigation tasks, is composed of people who want

their robots to learn how to navigate in real world environments. This thesis provides

contributions to both groups that are best discussed separately.

6.2.1 Developmental Robotics

Work in developmental robotics is usually presented in a task-independent way.

This thesis, however, has a specific goal. Unlike developmental robotics, the end

goal here is not a general-purpose developmental learning algorithm, but a general

localization algorithm. By first choosing what we want to achieve and then using

developmental processes only as a tool, we avoided becoming too attached to a

particular architecture. Instead, we molded and enhanced existing processes in order

to make implicit localization possible.

By coming at the problem this way, we observed a flaw in the basic anticipa-

tion and abstraction model by Blank et al. (2005): the inability to directly use

information contained in the more powerful, higher-level developmental layers. In-

deed, previous work never extended to multiple layers. In order to work around

this problem, the anticipation layer was given increased representational power by

using multi-step instead of single-step prediction. Multi-step prediction enabled the

prediction layer to understand a much wider variety of sequences. While this change

107

was made only to allow prediction to be useful for the long and complicated task

of localization, it could be applied to a vast variety of other problems. The use of

multi-step prediction is a contribution to the developmental robotics community.

6.2.2 Learned Robot Navigation

Many authors have applied machine learning to navigation tasks. From obstacle

avoidance to goal-finding, there is a large body of work. Particularly relevant here

is the work by Provost et al. (2006) and Smart and Kaelbling (2002). Both works

considered goal finding, and the path following task in this thesis is very similar. In

goal finding we want the robot to reach a specific goal, while in path following we

want a robot to follow a specific path. In the environments used by Provost et al.

and Smart and Kaelbling the environments were simple enough that there was only

a single path to the goal, and in both cases the robot’s task was to take this path.

Provost et al. (2006) developed a path-following robot that learned to associate

sensor inputs directly with high-level actions. Abstraction was provided by a self-

organizing map-like structure that converted sensor values to discrete states. Rein-

forcement learning was then used to determine the next action to take. New actions

were only chosen when the discrete state abstraction changed. By choosing actions

less often, the number of states that were visited in each training episode was greatly

decreased, and training proceeded much faster.

Smart and Kaelbling (2002) used Q-Learning with locally weighted regression as

a function approximation tool to perform a similar task. Bootstrapping was used

much the same as in this work, where known correct runs were provided to the robot

before it attempted to complete the task. The important contribution of their work

108

was a drastic increase in learning speed, as it could perform the task better than the

examples after only a few episodes.

Both of the works described above performed similar tasks to this work, but in

different ways. Both the approaches map sensor values directly to actions, so they

could not be used in cases where similar states should be handled differently. How-

ever, they also learned more robust control policies than were shown in Chapter 5.

As demonstrated in the previous chapter, predictive control was capable of dupli-

cating behavior, but was incapable of dealing robustly with change. Offset starting

positions in the simulated building quickly caused unrecoverable errors.

Although the reinforcement learning tests presented here did not achieve robust

control, the ideas at work are useful. Particularly, the ability to generate a reward

function based on prediction error could be very beneficial. Both Provost et al. (2006)

and Smart and Kaelbling (2002) used reward functions based on global information.

The need for global information makes their robots able to learn autonomously

only when an accurate localization method is available, and the value of learning

navigation based on a working localization algorithm is questionable. Therefore,

the major contribution of this work to the community working on using machine

learning for navigation tasks is a new way to create a reward function based on

training examples. The process used here was not entirely automatic. We did not

directly use the prediction error as a reward signal, but instead set a threshold and

only rewarded the agent when prediction error was sufficiently low.

This is related to both imitation learning (Atkeson and Schaal, 1997) and inverse

reinforcement learning (IRL) (Abbeel and Ng, 2004). Imitation learning systems at-

tempt to imitate the behaviors demonstrated in training examples. It is possible to

109

perform this task without posing the problem in a reinforcement learning framework.

On the other hand, IRL models the problem in a RL framework. IRL attempts to

build a reward function that can be used to achieve “good” behavior, and training

examples are used to define “good” behavior. The algorithm presented by Abbeel

and Ng is general, but it expresses reward as a linear function of known environmen-

tal features. For a path following task it is unclear what features would be provided

to the inverse reinforcement learning algorithm. Although it did not receive study

here, it would be interesting to see if the internal representations learned by an

anticipation network could be used to generate features for IRL.

110

Chapter 7

Conclusion

This thesis demonstrated the construction of a general system for performing robot

localization and, to some extent, control. A simulated robot successfully learned to

traverse a path that was more complex than published works using related methods.

7.1 Summary

Implicit localization has been successfully developed in simulated environments.

Starting with no initial knowledge, and just a single run of training data, the robot

is able to later recognize portions of the path. This is somewhat similar to the

global localization problem where a lost robot has to reacquire its position. It was

also clearly shown that as long as the simulated robots stayed close to their origi-

nal paths, the anticipation network could be used both for prediction and control.

This shows that the learned localization strategy had the ability to perform position

tracking.

This work even meets some of the goals of simultaneous localization and mapping.

That is, if a robot has a method to traverse a path, then it can learn a representation

111

for the path with no human interaction. However, it does not learn online or know

how to explore its environment, so the problem is far from fully addressed. Still,

the fact that the same system was able to understand paths through both a grid

world and a simulated environment shows how generally applicable the system is.

The same can not be said for heavily engineered human solutions.

Lastly, it was shown that the learned prediction network could be used as a source

of information for another learning algorithm. Specifically, the prediction error was

used as a reward signal for reinforcement learning. However, other combinations

would also be possible. The automatic generation of reward functions may be useful

for a wide variety of robotics tasks.

7.2 Future Work

There are several key areas that could use further study: the real-world applicability

of the system, the possibility of using bootstrapping to improve performance, and

the usefulness of prediction error for other purposes.

First, because tests were only run in simulation, it is difficult to say how well

the presented system would transfer to the real world. Although both simulation

environments included some degree of error, it is unknown how much real-world

error the abstraction and anticipation networks would be able to handle.

Second, we would like to be able to use only a single training example, and then

let the system create additional training examples that could increase its robustness.

We have shown that it is possible to repeat a task based on a single training example.

If we logged the sensorimotor information from successful task completions and

112

retrained the anticipation network to recognize the new data, then it might be

possible to gradually expand the range of conditions that the system is able to

understand. In such a way, it may be possible to start from a non-robust control

system and use bootstrapping to increase the performance over time.

Third, the implementation of reinforcement learning was not ideal. It took much

too long for the agents to reach acceptable performance. Ideally, we would like to

have only tens of training runs instead of hundreds or thousands. The fact that

predictive control worked so well showed that there was significant knowledge stored

in the network. However, the Q-Learning based implementation failed to efficiently

transfer the knowledge. Alternate reinforcement learning algorithms should be con-

sidered.

113

Reference List

Abbeel, P. and A. Y. Ng, 2004: Apprenticeship learning via inverse reinforcement
learning. Proceedings of the 21st International Conference on Machine Learning .

Atkeson, C. G. and S. Schaal, 1997: Robot learning from demonstration. Proceedings
of the 14th International Conference on Machine Learning , Morgan Kaufmann,
12–20.

Barto, A. G. and Ö. Şimşek, 2005: Intrinsic motivation for reinforcement learn-
ing systems. Proceedings of the 13th Yale Workshop on Adaptive and Learning
Systems , 113–118.

Bertsekas, D. P. and J. N. Tsitsiklis, 1996: Neuro-Dynamic Programming . Athena
Scientific.

Blank, D., D. Kumar, and L. Meeden, 2002: A developmental approach to intelli-
gence. Proceedings of the 13th Annual Midwest Artificial Intelligence and Cognitive
Science Society Conference.

Blank, D., D. Kumar, L. Meeden, and J. B. Marshall, 2005: Bringing up robot: Fun-
damental mechanisms for creating a self-motivated, self-organizing architecture.
Cybernetics and Systems , 36, 125–150.

Bui, H., S. Venkatesh, and G. West, 2002: Policy recognition in the abstract hidden
markov model. Journal of Artificial Intelligence Research, 17, 451–499.

Davison, A. J., 2003: Real-time simultaneous localisation and mapping with a single
camera. Proceedings of the 9th International Conference on Computer Vision,
1403–1410.

Dellaert, F., D. Fox, W. Burgard, and S. Thrun, 1999: Monte Carlo localization for
mobile robots. Proceedings of the IEEE International Conference on Robotics and
Automation, 1322–1328.

Duckett, T., S. Marsland, and J. Shapiro, 2002: Fast, on-line learning of globally
consistent maps. Autonomous Robots , 12, 287–300.

Eliazar, A. I. and R. Parr, 2005: Hierarchical linear/constant time SLAM using
particle filters for dense maps. Neural Information Processing Systems .

114

Elman, J. L., 1990: Finding structure in time. Cognitive Science, 14, 179–211.

Fahlman, S. E., 1988: Faster-learning variations on back-propagation: An empirical
study. Proceedings of the 1988 Connectionist Models Summer School .

Gerkey, B., R. T. Vaughan, and A. Howard, 2003: The Player/Stage Project: Tools
for multi-robot and distributed sensor systems. Proceedings of the 11th Interna-
tional Conference on Advanced Robotics , 317–323.

Hochreiter, S. and J. Schmidhuber, 1997: Long short-term memory. Neural Compu-
tation, 9, 1735–1780.

Kohonen, T., 1984: Self-organization and associative memory . Springer-Verlag,
Berlin, Germany.

Kramer, M. A., 1991: Nonlinear principal component analysis using autoassociative
neural networks. American Institute of Chemical Engineers Journal , 37, 233–243.

LeCun, Y., 1985: Une procédure d’apprentissage pour réseau a seuil asymmetrique
(a learning scheme for asymmetric threshold networks). Proceedings of Cognitiva
85 , 599–604.

Lungarella, M., G. Metta, R. Pfeifer, and G. Sandini, 2003: Developmental robotics:
a survey. Connection Science, 15, 151–190.

Madokoro, H., K. Sato, and M. Ishii, 2003: Acquisition of world images and self-
localization estimation using viewing image sequences. Systems and Computers in
Japan, 34, 68–78.

McGovern, E. A., 2002: Autonomous discovery of temporal abstractions from in-
teraction with an environment . Ph.D. thesis, Department of Computer Science,
University of Massachusetts, Amherst, MA, USA.

Minsky, M. and S. Papert, 1969: Perceptrons: An Introduction to Computational
Geometry . MIT Press, Cambridge, MA, USA.

Mitchell, T. M., 1997: Machine Learning . McGraw-Hill, New York, NY, USA.

Montemerlo, M., S. Thrun, D. Koller, and B. Wegbreit, 2003: FastSLAM 2.0: An
improved particle filtering algorithm for simultaneous localization and mapping
that provably converges. Proceedings of the 16th International Joint Conference
on Artificial Intelligence.

Nolfi, S. and J. Tani, 1999: Extracting regularities in space and time through a cas-
cade of prediction networks: The case of a mobile robot navigating in a structured
environment. Connection Science, 11, 125–148.

115

Osentoski, S., V. Manfredi, and S. Mahadevan, 2004: Learning hierarchical models
of activity. Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems .

Provost, J., P. Beeson, and B. J. Kuipers, 2001: Toward learning the causal layer
of the spatial semantic hierarchy using SOMs. AAAI Spring Symposium Series,
Learning Grounded Representations .

Provost, J., B. J. Kuipers, and R. Miikkulainen, 2004: Self-organizing perceptual
and temporal abstraction for robot reinforcement learning. AAAI Workshop on
Learning and Planning in Markov Processes .

Provost, J., B. J. Kuipers, and R. Miikkulainen, 2006: Developing navigation be-
havior through self-organizing distinctive state abstraction. Connection Science
(accepted for publication), 18.

Riedmiller, M. and H. Braun, 1993: A direct adaptive method for faster backprop-
agation learning: The RPROP algorithm. Proceedings of the IEEE International
Conference on Neural Networks , 586–591.

Rosenblatt, F., 1958: The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review , 65, 386–408.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1986: Learning internal rep-
resentations by error propagation. Parallel distributed processing: explorations in
the microstructure of cognition, MIT Press, Cambridge, MA, USA, volume 1,
318–362.

Rumelhart, D. E., B. Widrow, and M. A. Lehr, 1994: The basic ideas in neural
networks. Communications of the ACM , 37, 87–92.

Samuel, A. L., 1959: Some studies in machine learning using the game of checkers.
IBM Journal on Research and Development , 210–229, reprinted in E. A. Feigen-
baum and J. Feldman, editors, Computers and Thought, McGraw-Hill, New York,
1963.

Şimşek, Ö. and A. G. Barto, 2006: An intrinsic reward mechanism for efficient ex-
ploration. Proceedings of the 23rd International Conference on Machine Learning .

Smart, W. D. and L. P. Kaelbling, 2002: Effective reinforcement learning for mo-
bile robots. Proceedings of the IEEE International Conference on Robotics and
Automation, 3404–3410.

Sutton, R. S., 1988: Learning to predict by the methods of temporal differences.
Machine Learning , 3, 9–44.

116

Sutton, R. S. and A. G. Barto, 1998: Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA.

Sutton, R. S., D. Precup, and S. P. Singh, 1999: Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial Intel-
ligence, 112, 181–211.

Tesauro, G., 1995: Temporal difference learning and TD-Gammon. Communications
of the ACM , 38, 58–68.

Thrun, S., 2002: Robotic mapping: A survey. Exploring Artificial Intelligence in the
New Millenium, G. Lakemeyer and B. Nebel, eds., Morgan Kaufmann, 1–36.

Vaughan, R., K. Stoy, G. Sukhatme, and M. Mataric, 2002: LOST: Localization-
space trails for robot teams. IEEE Transactions on Robotics and Automation, 18,
796–812.

Watkins, C. J. C. H., 1989: Learning from delayed rewards . Ph.D. thesis, King’s
College of Cambridge, UK.

Werbos, P., 1974: Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences . Ph.D. thesis, Committee on Applied Mathematics, Harvard
University, Cambridge, MA, USA.

Williams, R. J. and D. Zipser, 1989: A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1, 270–280.

117

